TEXAS WATER COMMISSION

Joe D. Carter, Chairman O. F. Dent, Commissioner H. A. Beckwith, Commissioner

BULLETIN 6205

CHEMICAL COMPOSITION OF TEXAS SURFACE WATERS, 1959

Ву

L. S. Hughes and Wanda Shelby U. S. Geological Survey

Prepared in cooperation with the Geological Survey
United States Department of the Interior
and Others

TABLE OF CONTENTS

	Page
INTRODUCTION	1
COOPERATION	1.
COLLECTION AND ANALYSIS OF SAMPLES	2
Texas Water Commission-U. S. Geological Survey Sampling Program	2
International Boundary and Water Commission-U. S. Department of Agriculture Sampling Program	2
EXPRESSION OF RESULTS	3
SURFACE-WATER RUNOFF AND CHEMICAL-QUALITY CONDITIONS	4
Arkansas River Basin	4
Red River Basin	7
Sabine River Basin	7
Neches River Basin	7
Trinity River Basin	9
Brazos River Basin	9
Colorado River Basin	10
Guadalupe River Basin	11
Nueces River Basin	11
Rio Grande Basin	11
TABLES OF ANALYSES	17
Arkansas River Basin	19
Canadian River near Amarillo	19
Miscellaneous Analyses	20

	Page
Red River Basin	21
Salt Fork Red River near Hedley	21
Little Wichita River near Henrietta	22
Little Wichita River near Ringgold	23
Red River near Gainesville	24
Red River at Denison Dam near Denison	26
South Sulphur River near Cooper	27
Miscellaneous Analyses	28
Sabine River Basin	33
Sabine River near Tatum	33
Sabine River near Ruliff	34
Miscellaneous Analyses	35
Neches River Basin	36
Angelina River near Lufkin	36
Neches River at Evadale	37
Miscellaneous Analyses	38
Trinity River Basin	39
Trinity River near Rosser	39
Richland Creek near Fairfield	40
Trinity River at Romayor	42
Trinity River near Moss Bluff	43
Old River near Cove	44
Trinity River at Anahuac	45
Trinity Bay at Mouth of Trinity River near Anahuac	46
Miscellaneous Analyses	48
San Jacinto River Basin	49
Missellaneous Analyses	40

	Page
Brazos River Basin	50
Double Mountain Fork Brazos River near Aspermont	50
Croton Creek near Jayton	51
Salt Flat Creek at Weir B near Aspermont	52
Salt Croton Creek at Weir C near Aspermont	53
Salt Croton Creek at Weir D near Aspermont	54
Haystack Creek near Aspermont	55
Salt Croton Creek near Aspermont	56
Salt Croton Creek at Mouth near Aspermont	57
Salt Fork Brazos River near Aspermont	58
Brazos River at Seymour	59
Hubbard Creek near Breckenridge	60
Salt Creek at Olney	61
Salt Creek near Newcastle	62
Brazos River at Possum Kingdom Dam near Graford	63
Brazos River at Whitney Dam near Whitney	64
Navasota River near Bryan	65
Brazos River at Richmond	66
Miscellaneous Analyses	67
San Bernard River Basin	72
Miscellaneous Analyses	72
Colorado River Basin	73
Colorado River near Ira	73
Colorado River at Colorado City	74
Beals Creek near Westbrook	75
Colorado River near Silver	77
Colorado River near San Saba	79

	P a ge
Colorado River at Austin	80
Colorado River at Wharton	81
Miscellaneous Analyses	82
Lavaca River Basin	84
Miscellaneous Analyses	84
Guadalupe River Basin	85
Guadalupe River at Victoria	85
San Antonio River at Goliad	86
Miscellaneous Analyses	87
Mission River Basin	88
Miscellaneous Analyses	88
Aransas River Basin	88
Miscellaneous Analyses	88
Nueces River Basin	89
Nueces River near Mathis	89
Miscellaneous Analyses	90
Rio Grande Basin	91
Rio Grande near El Paso	91
Rio Grande below Old Fort Quitman	92
Rio Grande at Upper Presidio	93
Rio Grande near Johnson Ranch	94
Rio Grande at Langtry	95
Pecos River below Red Bluff Dam near Orla	96
Pecos River near Girvin	97
Pecos River near Shumla	98
Rio Grande at Laredo	99
Rio Grande below Falcon Dam	100

		Page
	Rio Grande at Fort Ringgold, Rio Grande City	101
	Rio Grande at Anzalduas Dam	102
	Miscellaneous Analyses	103
	TABLE	
1.	Mean discharge and maximum, minimum and weighted average concentrations of dissolved solids for the 1959 water year for stations operated under the Texas Water CommissionU. S. Geological Survey sampling program	6
	ILLUSTRATIONS	
	<u>Figures</u>	
1.	Mean discharge at selected stations for the 1958 and 1959 water years and for the period of record	5
2.	Duration curves for dissolved solids for four selected stations, 1959 water year	8
3.	Periods of operation of quality-of-water sampling stations in Texas	13
	<u>Plate</u>	
		Follows
1.	Quality-of-water stations, water year 1959	Page 12

CHEMICAL COMPOSITION OF TEXAS SURFACE WATERS, 1959

INTRODUCTION

This report contains data on the chemical quality of the surface waters of Texas in the water year 1959. Results are presented for chemical analyses of water samples obtained daily from selected points throughout the State and also the results for other samples obtained at various points during the period October 1, 1958, to September 30, 1959.

All natural water contains dissolved mineral matter. Water in contact with rocks and soils, even for only short periods of time, will dissolve some of the mineral and organic substances. The chemical character of stream waters is dependent on several factors, such as type of soil and rock with which the water is in contact, length of time of the contact, climatic conditions, and activities of man. In Texas, the chemical composition of waters varies widely from stream to stream and, often, from point to point on a particular stream.

The records of chemical analysis of surface waters in the report serve as a basis for determining the suitability of the waters for industrial, agricultural, and domestic uses insofar as such use is affected by the dissolved mineral matter in the waters.

COOPERATION

This is the fourteenth in a series of annual reports covering surface waters of Texas prepared by the U. S. Geological Survey in cooperation with the Texas Water Commission (formerly the Texas Board of Water Engineers). In addition to the annual reports, an earlier compilation was issued providing data for the period 1938 to 1945. These reports may be obtained by writing the Texas Water Commission, Austin, Texas.

Other agencies cooperating in the collection of these data were the Brazos River Authority, the Canadian River Municipal Water Authority, the Chambers-Liberty Counties Navigation District, the cities of Fort Worth and Wichita Falls, the Colorado River Municipal Water District, the Greenbelt Municipal and Industrial Water Association, the Lower Colorado River Authority, the Lower Neches Valley Authority, the Red Bluff Water Power Control District, the Sabine River Authority, the Tarrant County Water Control and Improvement District No. 1, the Texas Electric Service Company, the U. S. Corps of Engineers, the West Central Texas Municipal Water District, and the Wichita County Water Control and Improvement Districts.

Analyses for the Red River near Gainesville were made by the Oklahoma City office of the U. S. Geological Survey, in cooperation with the Oklahoma Water Resources Board.

Records for ten stations in the Rio Grande basin have been furnished by the U. S. Department of Agriculture, in cooperation with the International Boundary and Water Commission.

COLLECTION AND ANALYSIS OF SAMPLES

The samples for which data are given were collected from October 1, 1958, to September 30, 1959. Descriptive statements are given for each sampling station for which a regular series of chemical analyses have been made. These statements give location of the stream sampling station, drainage area of the stream above the station, length of time for which records are available, extremes of dissolved solids, hardness, and water temperature, and other pertinent data. Records of discharge of the stream at or near the sampling point for the sampling period are included in most tables of analyses.

Texas Water Commission-U. S. Geological Survey Sampling Program

During the period covered by this report samples were collected daily at 39 points on Texas streams and twice weekly at four sampling points in Trinity Bay near the mouth of the Trinity River. Samples were collected twice monthly at seven points in a small area on Salt Croton and Haystack Creeks near Aspermont. In addition to the data on chemical quality included in this report, temperature date for streams at 31 of the sampling stations and sediment data for one of the sampling stations are available in the files of the U. S. Geological Survey, Austin, Texas. Records of chemical quality of streams at 52 additional sampling points for varying lengths of time have been published in previous reports of this series. The locations of the active and inactive stations are shown on the accompanying map, Plate 1, and the periods of operation of all the stations are shown on the bar graph (Figure 3). The seven sampling points on Salt Croton and Haystack Creeks are indicated as a single location (42) on the map.

Water samples were usually obtained daily at or near a Geological Survey stream-gaging station. Specific conductance was determined on all samples. Composite samples were usually made for 10-day periods by using equal volumes of successive samples having similar conductances. For some streams that are subject to sudden and large changes in chemical composition or concentration, samples were composited for shorter periods on the basis of the concentration of the daily samples. At several sampling stations where changes in chemical composition occur gradually, daily samples for an entire month were composited.

International Boundary and Water Commission-U. S. Department of Agriculture Sampling Program

This report includes chemical quality records for 10 stations in the Rio Grande basin where samples were collected by the International Boundary and Water Commission and analyses made by the U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, California. At 3 of the stations, samples were collected daily; at the others, from 1 to 16 samples were collected each month. A single monthly composite sample was

made for analysis by taking from each individual sample an amount of water proportional to the volume of river flow represented by the sample. Results of these analyses are also published in equivalents per million in Water Bulletin Number 29 of the International Boundary and Water Commission, together with stream flow and related data.

EXPRESSION OF RESULTS

The chemical constituents given in the tables of analyses are reported in parts per million. A part per million is a unit weight of a constituent in a million unit weights of water. Values for other characteristics are given in appropriate units.

Mean discharge is reported in cfs (cubic feet per second). A cubic foot per second is the rate of discharge of a stream whose channel is 1 square foot in cross-sectional area and whose average velocity is 1 foot per second.

Dissolved solids are reported in tons per day, tons per acre-foot, and parts per million. Values reported for dissolved solids less than 1,000 ppm (parts per million) are residues on evaporation and for more than 1,000 ppm are sums of determined constituents unless noted otherwise. In obtaining the sum, the bicarbonate is calculated as carbonate by dividing by 2.03.

For those analyses in which a calculated value as sodium is shown for sodium and potassium, this value, in equivalents per million, was used in computing the percent sodium and sodium-adsorption ratio. For those analyses in which a determined value for sodium is reported separately, this value is used in computing the percent sodium and sodium-adsorption ratio.

Sodium-adsorption ratio (SAR) is used to express the relative activity of sodium ions in exchange reactions with the soil.

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

where the concentrations of the constituents are expressed in equivalents per million. Waters are divided into four classes with respect to sodium hazard depending upon the SAR value and the specific conductance. At a conductance of 100 micromhos per centimeter the dividing points are at SAR values of 10, 18, and 26, but at 5,000 micromhos the corresponding dividing points are at SAR values of approximately 2.5, 6.5, and 11.

Specific conductance, a measure of a water's ability to conduct an electric current, is reported in micromhos per centimeter at 25°C.

A water having a pH of 7.0 is considered to be neutral; less than 7.0 increasingly alkaline.

Sodium and potassium are reported as sodium unless listed separately in the tables.

Hardness due to calcium and magnesium and noncarbonate hardness are reported as calcium carbonate $(CaCO_3)$.

The weighted averages of analyses are reported for daily sampling stations for which discharge records are available. The weighted-average analysis represents the approximate composition of water that would be found in a reservoir containing all the water passing a given station during the year, after thorough mixing in the reservoir.

The samples were analyzed according to methods used by the U. S. Geological Survey. $\underline{1}\!\!\!/$

SURFACE-WATER RUNOFF AND CHEMICAL-QUALITY CONDITIONS

Rainfall and surface-water runoff were deficient over much of Texas during the 1959 water year. Drought conditions beginning in West Texas in October 1958 had generally spread across the state by March 1959. Only in the area drained by the upper Brazos and Guadalupe Rivers was the runoff excessive. Mean discharges for selected stations for the 1958 and 1959 water years, as well as for the period of record, are shown in Figure 1. On many streams changes in dissolved-solids concentration are closely related to the rate of discharge, and low flows are likely to be considerably more mineralized than are flood flows in the same stream. However, for streams whose discharge is controlled by reservoirs, the chemical composition of the water may remain relatively constant despite large fluctuations in discharge. Streams that are subject to pollution by oil fields or other sources of salts may show marked increases in dissolved solids at times when moderate storm runoff flushes oil-field wastes or salt residues from evaporation of water into the streams.

In Table 1 are listed the mean discharges and the maximum, minimum and weighted-average concentrations of dissolved solids for the 1959 water year for those stations operated under the Texas Water Commission-U. S. Geological Survey sampling program.

Arkansas River Basin

Rainfall in the Arkansas River basin in Texas was below normal during the 1959 water year and runoff of the Canadian River near Amarillo was only about 40 percent of the 22-year average. Excessive runoff occurred only in the month of August, when the average discharge was 153 percent of the long-term monthly mean. During the remainder of the year, discharge ranged from 4 to 71 percent of the long-term monthly average.

The decrease in runoff was accompanied by an increase in the weighted average of dissolved-solids concentrations from 527 ppm in the 1958 water year to 649 ppm in 1959.

^{1/} Rainwater, F. H., and Thatcher, L. L., 1960, Methods of collection and analysis of water samples: U. S. Geological Survey Water-Supply Paper 1454. American Public Health Association and others, 1955, Standard methods for the examination of water, sewage and industrial wastes.

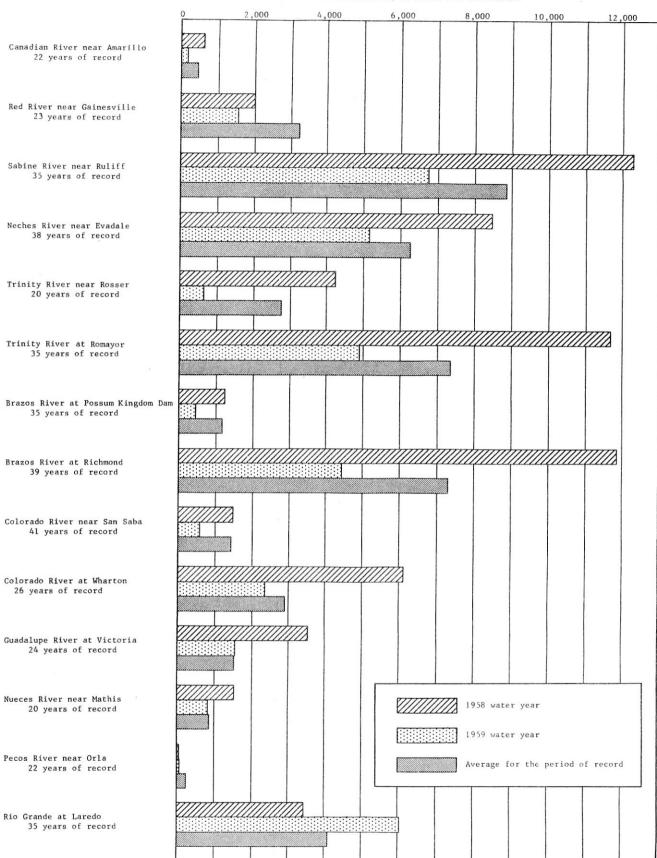


Figure 1.--Mean discharge at selected stations for the 1958 and 1959 water years and for the period of record.

Table 1.--Mean discharge and maximum, minimum, and weighted average concentrations of dissolved solids for the 1959 water year for stations operated under the Texas Water Commission--U. S. Geological Survey sampling program.

	Mean	D	issolved solids	(ppm)
Sampling station	discharge (cfs)	Maximum	Minimum	Weighted average
ARKANSAS RIVER BASIN Canadian River near Amarillo	188	2,130	394	649
RED RIVER BASIN Salt Fork Red River near Hedley Little Wichita River near Henrietta Little Wichita River near Ringgold Red River near Gainesville Red River at Denison Dam near Denison South Sulphur River near Cooper	44.8 1,534 2,298 91.2	1,810 1,430 2,810 4,690 1,140 452	563 63 38 472 1,020	218 151 1,640 1,100
SABINE RIVER BASIN Sabine River near Tatum Sabine River near Ruliff	1,683 6,723	883 212	92 43	188 109
NECHES RIVER BASIN Angelina River near Lufkin Neches River at Evadale	994 5,162	186 156	63 52	111 89
TRINITY RIVER BASIN Trinity River near Rosser Richland Creek near Fairfield Trinity River at Romayor Trinity River near Moss Bluff Old River near Cove Trinity River at Anahuac Trinity Bay near Anahuac	664 4,909 	745 4,260 666 693 585 	174 140 132 143 105	425 249
BRAZOS RIVER BASIN Double Mountain Fork Brazos River near		2.00	n n	,
Aspermont Croton Creek near Jayton Salt Fork Brazos River near Aspermont Hubbard Creek near Breckenridge Salt Creek at Olney Salt Creek near Newcastle	219 126 47.9 .36 3.12	4,840 99,200 2,420 3,670 2,170	715 2,130 143 101 51	999 5,020 325 463 205
Brazos River at Possum Kingdom Dam near Graford Brazos River at Whitney Dam near	458	1,370	996	1,130
Whitney Navasota River near Bryan Brazos River at Richmond	681 529 4,450	947 928 718	845 72 171	893 226 323
COLORADO RIVER BASIN Colorado River near Ira Colorado River at Colorado City Beals Creek near Westbrook Colorado River near Silver Colorado River near San Saba Colorado River at Austin Colorado River at Wharton	2.59 20.2 15.9 35.7 593 1,631 2,372	39,100 19,000 8,440 12,800 818 287 302	255 385 180 314 220 221	4,990 2,010 680 1,270 315 249 231
GUADALUPE RIVER BASIN Guadalupe River at Victoria San Antonio River at Goliad	1,580 597	376 808	216 159	303 457
NUECES RIVER BASIN Nueces River near Mathis	829	362	237	274
RIO GRANDE BASIN Pecos River below Red Bluff Dam near Orla Pecos River near Girvin	a 84.4 26.1	6,220	4,240	5,140

a Discharge values adjusted to exclude inflow from Salt (Screwbean) Draw which enters Pecos River between sampling point and gaging station.

Extremely low flow is maintained by drainage of sewage effluent down East Amarillo Creek from the Amarillo sewage disposal plant, and analyses often show nitrate concentrations in excess of 50 ppm.

Red River Basin

The water of the Red River upstream from Lake Texoma, except during flood periods, is of poor quality because of the presence of oil-field brines and drainage from natural deposits of salt and gypsum. At the Gainesville station just upstream from Lake Texoma, the weighted average of dissolved-solids concentrations for the 1959 water year, in spite of decreased runoff, was 1,640 ppm as compared with 1,950 ppm in the 1958 water year. In 1958 runoff was more evenly distributed throughout the entire year, with more time for the flow to come in contact with the rocks and soils, whereas in 1959 more than 75 percent of the runoff occurred in the three months, May to July. The effect was to bring about a lower weighted average of dissolved-solids concentrations in 1959.

Below Lake Texoma, the water is of better quality. At Denison Dam, the dissolved-solids concentrations increased slowly from a minimum of 1,020 ppm in October to a maximum of 1,140 ppm in September.

Two new sampling stations were established in the Red River basin in the 1959 water year. They were Little Wichita River near Ringgold and South Sulphur River near Cooper. A station on the Little Wichita near Henrietta, previously operated from December 1952 to January 1956, was re-established.

The Cooper station shows water of good quality, with a range of dissolved-solids concentrations from 125 ppm to 452 ppm and a weighted average of 167 ppm.

Sabine River Basin

The Sabine River drains an area of high rainfall in East Texas and Western Louisiana. The water, except where polluted by oil-field or other industrial wastes, is almost always low in dissolved solids although often high in organic color and turbidity. Runoff at the Tatum station during 1959 was about 60 percent of the 20-year average. Excessive flooding occurred in May in the upper part of the basin as a result of spring rains. At the downstream station near Ruliff, runoff was about 75 percent of the 35-year average. The weighted average of dissolved-solids concentrations was 188 ppm at the Tatum station and 109 ppm at the Ruliff station. A duration curve for the Sabine River near Ruliff shows the percentage of time during which specified concentrations of dissolved solids were equaled or exceeded during the 1959 water year. (See Figure 2.) The curve shows that 200 ppm of dissolved solids was exceeded only 8 percent of the time.

Neches River Basin

The Neches River is similar to the Sabine River in that it also drains an area of high rainfall, and the water in the basin is usually of good quality except where polluted by oil-field or other industrial wastes. At the Evadale station, the streamflow was a record high for October as a result of September rains,

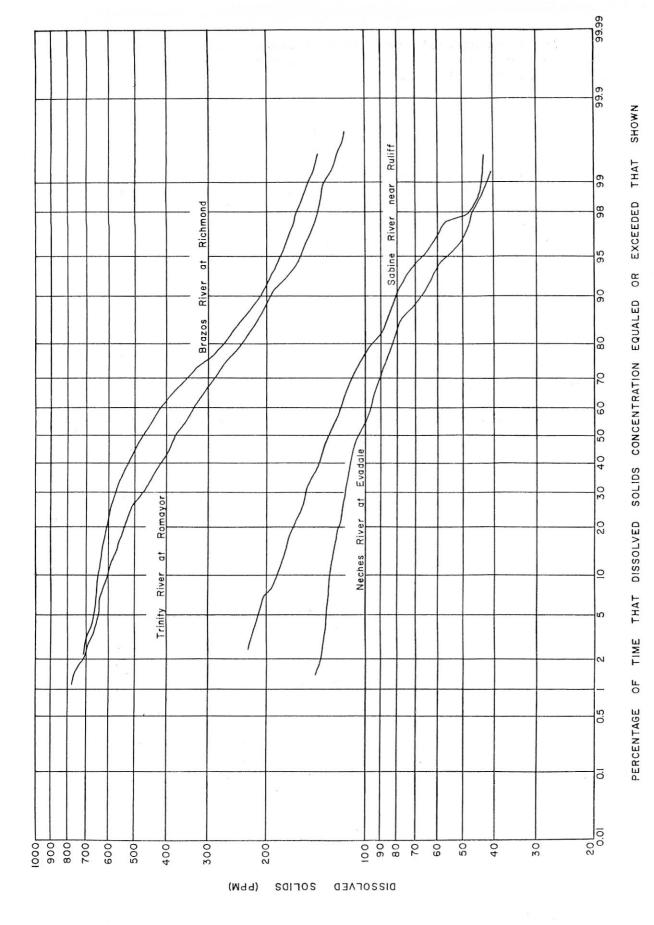


Figure 2.--Duration curves for dissolved solids for four selected stations, 1959 water year.

even though streamflow for the 1959 water year was deficient. Locally heavy runoff occurred after July 24 as a result of Hurricane Debra.

The dissolved-solids concentrations ranged from a minimum of 52 ppm to a maximum of 156 ppm. The weighted average was 89 ppm. A duration curve for the Neches River at Evadale is given in Figure 2 and shows that for 46 percent of the 1959 water year the concentration of dissolved solids was 100 ppm or less. At the station upstream on the Angelina River near Lufkin, the weighted average of dissolved-solids concentrations was 111 ppm.

Trinity River Basin

Streamflow was generally deficient in the headwater areas of the Trinity River basin during the 1959 water year. However, on October 8, rainfall of up to six inches fell at Fort Worth and local flash floods occurred. At the Rosser station, streamflow for the 1959 water year was only 16 percent of that for the 1958 water year, and 24 percent of the 20-year average. The cities of Fort Worth and Dallas divert considerable water for municipal supply, of which about 60 percent is returned as sewage effluent. The effects of this sewage effluent on chemical quality were more pronounced because of the deficient streamflow. Nitrate concentrations ranged from 9.0 ppm to 57 ppm, with a weighted average of 22 ppm.

Average discharge at Romayor during the 1959 water year was 4,909 cfs, as compared to the 35-year average of 7,389 cfs. Dissolved-solids concentrations ranged from a minimum of 132 ppm to a maximum of 666 ppm, with a weighted average of 249 ppm. A duration curve for the Trinity River at Romayor shows the percentage of time during which specified concentrations of dissolved solids were equaled or exceeded during the 1959 water year. (See Figure 2.)

Brazos River Basin

Quality of surface waters varies considerable in the Brazos River basin due to the wide range of geologic, climatic, and cultural factors present. In the upper part of the basin, minor tributaries contribute highly saline water to the Brazos River. Also, where rainfall is light, soluble minerals accumulate on rock and soil surfaces until they are flushed away by heavy rains. Thus, the runoff contains large concentrations of dissolved solids. In the lower part of the basin, where rainfall is heavier and the rocks are more completely leached, the water is less mineralized.

Streamflow of the Double Mountain Fork Brazos River near Aspermont was 122 percent of the 30-year average. Dissolved-solids concentrations exceeded 3,000 ppm 76 percent of the year, yet the weighted average of dissolved-solids concentrations was only 999 ppm because of the improved quality of the water during periods of high runoff. At the Salt Fork Brazos River station near Aspermont, the weighted average decreased from 8,500 ppm in 1958 to 5,020 in 1959.

The weighted average of dissolved-solids concentrations of the water discharged from Possum Kingdom Reservoir was 1,130 ppm as compared with 1,180 ppm in 1958. The monthly composites ranged from 996 ppm to 1,370 ppm. Water stored in Whitney Reservoir is generally of better quality than that stored in Possum Kingdom Reservoir because the intervening drainage area does not have sources of highly saline water as does the Brazos River above Possum Kingdom Reservoir.

However, whereas the quality of the water released from Possum Kingdom Reservoir was somewhat better than in 1958, the weighted average of dissolved-solids concentrations of the water released from Whitney Reservoir increased from 604 ppm in 1958 to 893 ppm in 1959 due to deficient runoff between the two reservoirs.

Water discharge of the Brazos River at Richmond was only about 60 percent of the average for the 39-year period of record. However, the disolved-solids concentrations ranged from a minimum of 171 ppm to a maximum of only 718 ppm, with a weighted average of 323 ppm. A duration curve for the station, showing the percentage of time during which specified concentrations of dissolved solids were equaled or exceeded during the 1959 water year, is given in Figure 2.

Three new sampling stations were placed in operation in the Brazos River basin during the year. They were Croton Creek near Jayton, Brazos River at Seymour, and Navasota River near Bryan.

Colorado River Basin

Two new stream-gaging and sampling stations were placed in operation during November 1958 on Colorado River near Ira and Beals Creek near Westbrook. These two stations, together with those at Colorado City and Silver, provide information on the quality of water that would be available for storage in a proposed reservoir near Silver. Runoff from the area was deficient for the 1959 water year, and the water was saline much of the time. The flow at the Colorado City station was about 30 percent of the 13-year average, and the weighted average of dissolved-solids concentrations was 2,010 ppm. Beals Creek is less mineralized than the Colorado River upstream, and the dissolved-solids concentrations ranged from 180 ppm to 8,440 ppm, with a weighted average of 680 ppm.

Downstream from Beals Creek, at the Silver station, the quality of the Colorado River water is better than at Ira or Colorado City. The range in dissolved-solids concentrations was from 314 to 12,800 ppm, a new maximum for the period of record. The weighted average was 1,270 ppm.

During the 1959 water year, water discharge of the Colorado River near San Saba was only about 40 percent of the 41-year average. However, the weighted average of dissolved-solids concentrations was 315 ppm, only slightly greater than the 304 ppm recorded for the 1958 water year, when streamflow was about normal.

The station at Austin measures the chemical quality of water that has been thoroughly mixed by passage through the six Highland lakes and only gradual changes in composition occur. Although runoff was less than normal, flow passing Austin was of good quality. The weighted average of dissolved-solids concentrations was only 249 ppm.

Inflow from tributary streams below Austin produces little significant change in the chemical composition of the Colorado River. At Wharton, a weighted average of 231 ppm shows water of the same good quality as that released from the lakes above Austin.

Guadalupe River Basin

The Guadalupe River heads in the Edwards Plateau and flows across the Balcones fault zone. A relatively high base flow is maintained by natural springs in the drainage area. Water from the Guadalupe River is of the calcium bicarbonate type and rarely exceeds 400 ppm in dissolved solids. In the 1959 water year, runoff at the Victoria station was slightly greater than the 24-year average, and the weighted average of dissolved-solids concentrations was 303 ppm.

The station, San Antonio River at Goliad, was re-established in the 1959 water year. Chemical-quality records are also available for this station for the 1946 water year. In 1959, dissolved-solids concentrations ranged from 159 ppm to 808 ppm, with a weighted average of 457 ppm.

Nueces River Basin

The only sampling point in the Nueces River basin for the 1959 water year was near Mathis at the outflow from Lake Corpus Christi. Past records indicate that considerable variation in chemical quality occurs at upstream points in the Nueces basin, but mixing of flood flows in the lake results in water that is always of good quality. The weighted average of dissolved-solids concentrations was 274 ppm.

Rio Grande Basin

Streamflow at the station, Pecos River below Red Bluff Dam near Orla, was only 33 percent of the 22-year average but was 15 percent greater than in 1958. The weighted average of dissolved-solids concentrations decreased from 5,900 ppm in 1958 to 5,140 ppm in 1959. Storage in Red Bluff Reservoir decreased during the year to 60,000 acre-feet, only about 20 percent of capacity.

Floods occurred throughout October in the Rio Grande from Rio Conchos downstream but they were most severe in the lower Rio Grande Valley below Falcom Reservoir as a result of heavy inflow from lower Texas tributaries and a record high monthly rainfall of 17.12 inches at Brownsville. Streamflow for the water year was near average and dissolved-solids concentrations were generally lower than in 1958.

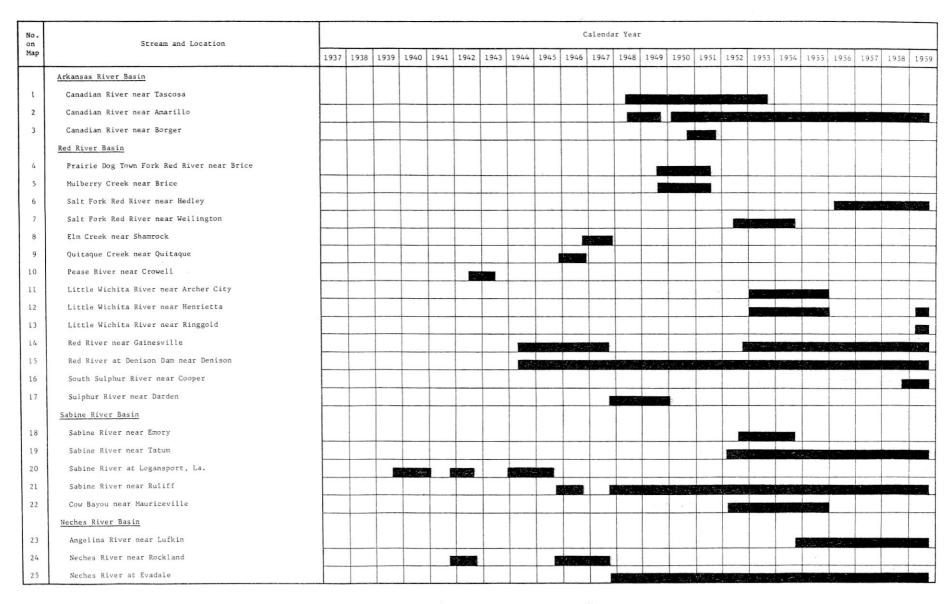


Figure 3. - Periods of operation of quality-of-water sampling stations in Texas

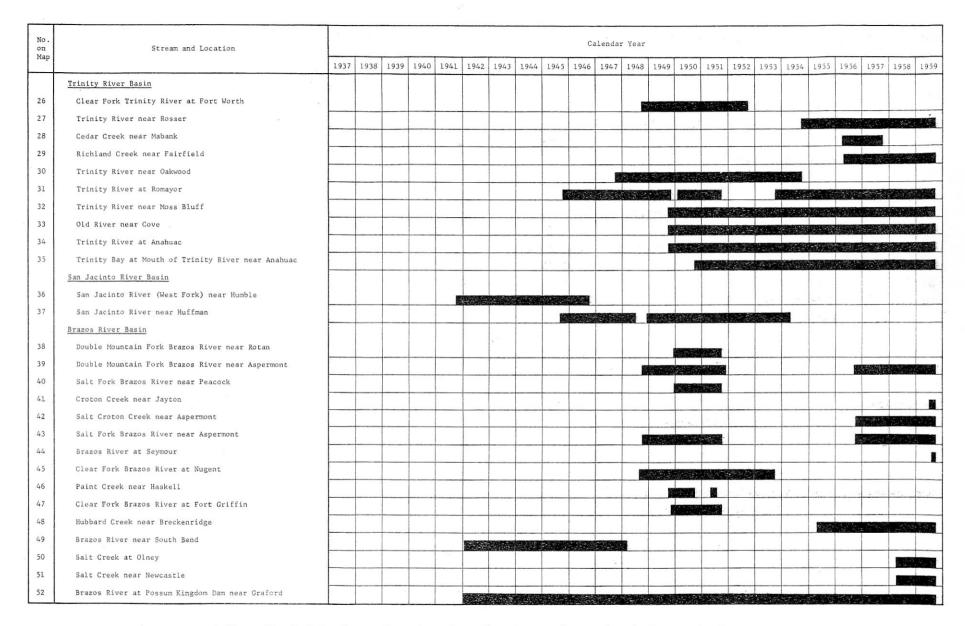


Figure 3. - Periods of operation of quality-of-water sampling stations in Texas - Continued

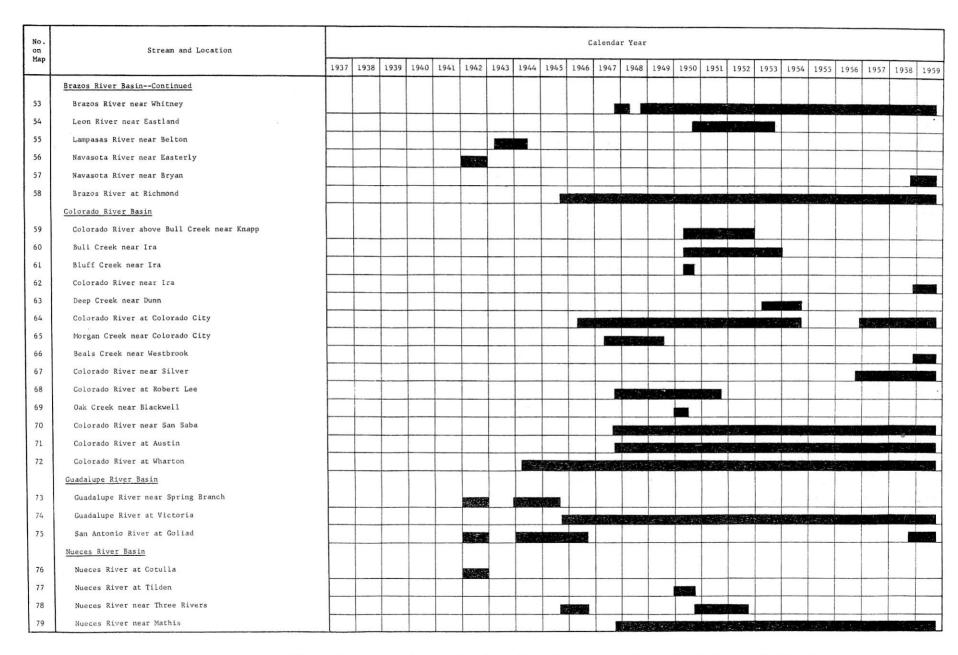
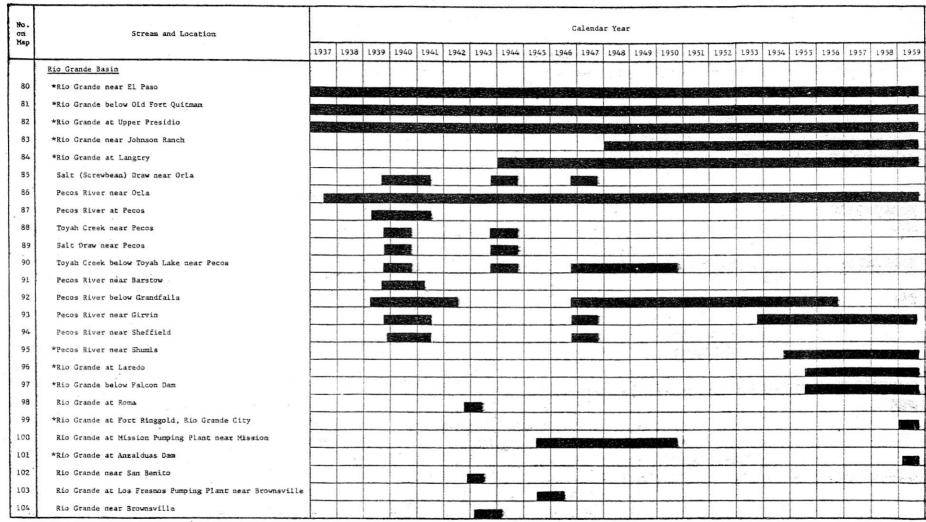



Figure 3. - Periods of operation of quality-of-water sampling stations in Texas - Continued

*Analyses by the U. S. Department of Agriculture, published in Water Bulletins of the International Boundary and Water Commission. See page 1.

Figure 3. - Periods of operation of quality-of-water sampling stations in Texas -- Continued

TABLES OF ANALYSES

In the following tables the heading "Chemical analyses, in parts per million, water year October 1958 to September 1959" has been used throughout. These tables have been prepared by the U. S. Geological Survey, utilizing prepared forms with this heading appearing thereon.

The reader's attention is called to the fact that certain columns of these tables contain values that are not given in parts per million. A listing of these excepted columns follows:

Date of collection

Mean discharge (cfs)

Dissolved solids - Tons per acre-foot

Dissolved solids - Tons per day

Percent sodium

Sodium-adsorption ratio

Specific Conductance (micromhos at 25°C)

pН

Density at 20°C

ARKANSAS RIVER BASIN

2275. CANADIAN RIVER NEAR AMARILLO, TEX.

LOCATION.--At gaging station at bridge on U. S. Highways 87 and 287, 1,500 feet downstream from Pitcher Creek, 1.7 miles downstream from Panhandle & Santa Fe Railway bridge, and 19 miles north of Amarillo, Potter County.

DRAINAGE AREA.--19,445 square miles, of which 4,069 miles is probably noncontributing.

RECORDS AVAILABLE.---Chemical analyses: July 1948 to October 1949, February 1950 to September 1959.

Water temperatures: August 1949 to September 1959.

Sediment records: August 1949 to September 1952.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 2,130 ppm Apr. 8-9; minimum, 394 ppm Aug. 23-31.

Hardness: Maximum, 704 ppm Apr. 8-9; minimum, 116 ppm Aug. 23-79.

Water temperatures: Maximum, 76°F Aug. 16; minimum, freezing point on many days during winter months.

EXTREMES, 1948-59.--Dissolved solids: Maximum, 3,000 ppm Mar. 21, 1957; minimum, 252 ppm Sept. 21-30, 1957.

Hardness: Maximum, 974 ppm Mar. 21, 1957; minimum, 69 ppm Sept. 6, 1957.

Specific conductance: Maximum daily, 4,490 micromhos Mar. 21, 1957; minimum daily, 35°F June 29, 1951; minimum daily, 35°F June 29, 1951; minimum daily, 35°F June 29, 1951; minimum daily, 36°F June 30°F June 30°F

REMARKS.--Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631.

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia	ssolved so	olids	Hard as C		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₂)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-10, 1958	69.1	23		84	28	2.7		238	280	290	1.0	1.7		1,110	1.51	207	324	130	64	6.5	1,810	. 7.5
Oct. 11-20	29.2	31		102	38	30		241	317	362	1.6	36		1,310	1.78	103	411	214	62	6.5	2,140	7.2
Oct. 21-31	14.4	49		100	42	25		255	281	292	2.5	77		1,230	1.67	47.8	422	213	57	5.5	1,950	7.0
Nov. 1-10	17.0	54		89	40	28		410	233	250	2.5	83 66		1,240	1.69	56.9	386	50	62	6.3	1,840	7.3
Nov. 11-20	30.8	34		96	41	25		303	245	290	1.6	56		1,180	1.60	98.1	408	160	58	5.6	1,960	7.0
Nov. 21-30	29.6	34		112	43	31	9	241	340	390	1.6	36		1,410	1.92	113	456	259	60	6.5	2,330	6.7
Dec. 1-10	21.7	39		108	42	33	2	350	311	345	1.9	77		1,430	1.94	83.8	442	155	62	6.9	2,250	6.8
Dec. 11-19	27.4	42		122	39	32	1	271	341	378	1.7	60		1,440	1.96	107	465	243	60	6.5	2,280	7.7
Dec. 20-31	48.2	26		114	39	38		256	397	442	1.1	26		1,550	2.11	202	445	235	65	7.8	2,500	7.9
Jan. 1-10, 1959	17.6	30		142	41	348	8.9	257	411	455	1.2	38		1,600	2.18	76.0	523	312	59	6.6	2,570	7.6
Jan. 11-20	49.8	24		95	36	34		254	306	412	.9	16		1,350	1.84	182	385	1.76	66	7.5	2,260	8.2
Jan. 21-31	31.0	26	1	112	41	38	4	282	371	458	1.0	21		1,550	2.11	130	448	217	65	7.9	2,520	8.2
Feb. 1-14	61.6	33		118	44	39	7	262	399	478	1.4	39		1.640	2.23	273	476	261	64	7.9	2,660	7.4
Feb. 15-28	14.2	51		85	39	27	2	426	235	258	2.5	2		1,150	1.56	44.1	372	24	61	6.2	1,870	7.6
Mar. 1-10	10.6	50		70	34	16	2	288	143	149	2.5	82		858	1.17	24.6	314	78	53	4.0	1,380	6.5
Mar. 11-20	8.52	51		64	32	15	9	390	117	118	2.7	26		a762	1.04	17.5	291	0	54	4.1	1,300	6.9
Mar. 21-31	10.0	60		60	32	16	5	400	117	114	2.4	28		a775	1.05	20.9	281	0	56	- 4.3	1,240	7.1
Apr. 1-7	13.0	59		64	33	139	16	305	113	118	2.7	88		a783	1.06	27.5	295	45	49	3.5	1,240	6.9
Apr. 8-9	33.5	37		188	57	46	6	202	634	610	1.3	33		2,130	2.90	193	704	538	59	7.6	3,270	8.2
Apr. 10-20	14.5	50	1	64	33	1.7	6	403	130	143	2.5	4.2		a801	1.09	31.4	295	0	56	4.5	1,340	7.4
Apr. 21-30	10.9	58		60	35	1.3	8	384	104	116	2.9	.2		728	.99	21.4	294	0	51	3.5	1,250	7.1
May 1-3, 6	9.65	54		63	36	14		298	117	144	2.5	62		841	1.14	21.9	305	61	51	3.7	1,350	6.8
May 4-5, 7-10	130	18		38	16	1.3		187	134	115	.9	3.2		584	.79	205	161	8	65	4.7	954	7.7
May 11-20	119	22	1	69	28	33		238	315	348	1.1	9.9		1,250	1.70	402	287	92	72	8.7	2,090	7.2
May 21-31	60.4	36		76	36	23	7	246	231	260	1.8	50		1,050	1.43	171	338	136	60	5.6	1,780	6.5
June 1-10	495	38		53	27	18	7	259	158	169	1.4	37		843	1.15	1,130	243	30	63	5.2	1,310	6.8
June 11-22	26.3	50		63	34	18	8	326	168	171	2.0	22		896	1.22	63.6	297	30	58	4.8	1,380	7.0
June 23-30	454	21		39	17	1.6	0	200	141	140	1.0	6.2		667	.91	818	168	4	68	5.4	1,040	7.2
July 1-6	1,087	19		40	14	14	7	182	138	128	.7	3.5		a579	.79	1,700	158	8	67	5.1	925	7.2
July 7-13	63.7	34		80	31	2.3		249	258	245	1.6	14		1,020	1.39	175	327	123	61	5.6	1,630	6.8
July 14-18	620	1.7		34	11	10	5	177	91	82	.6	3.0		432	.59	723	130	0	64	4.0	706	7.4
July 19-31	169	20		49	19	1.7	8	214	187	150	.9	5.4		734	1.00	335	200	25	66	5.5	1,180	7.7
Aug. 1-2, 9	298	35		64	32	22	4	292	202	220	1.7	16		a939	1.28	756	291	52	63	5.7	1,510	8.2
Aug. 3-8, 10, 16	947	48		54	32	1.5	0	307	139	125	2.2	18		753	1.02	1,930	266	14	55	4.0	1,150	7.4
Aug. 11-15, 17-22	722	17		36	13	13		196	123	105	.9	2.5	1	532	.72	1,040	144	0	67	5.0	863	7.4
Aug. 23-31	2,332	15		30	10		7	168	91	65	.7	2.5		394	.54	2,480	116	0	65	3.9	637	7.8
Sept. 1-8	128	20		48	16	14		195	136	127	.9	7.9		a592	.81	205	186	26	62	4.5	1,000	7.5
Sept. 9-18	14.9	48		74	33	20		278	203	212	2.0	29	1	a944	1.28	38.0	320	92	58	5.0	1,570	6.8
Sept. 19-25, 27-30	48.7	42		56	26	15		310	126	135	1.9	14		726	.99	95.5	246	0	58	4.4	1,210	6.9
Sept. 26	74.0					-	-	215		77			-				186	10			768	7.8
Weighted average	188	24		46	19	15	3	215	143	134	1.1	11		649	0.88	329	193	1.7	63	4.8	1,040	

a Calculated from determined constituents.

ARKANSAS RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN ARKANSAS RIVER BASIN IN TEXAS

Chemical analyses, in parts per million, water year October 1958 to September 1959

				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dir (solved so	lids ad)	Hard as C	iness cCO,	Per-	So- dium	Specific conduct-	
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO.)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25' C)	pH
								EAST	AMARILL	O CREEK N	EAR AMA	RILLOL										
Oct. 1, 1958		54 48 57 54 74 74 62 59 64		58 54 56 50 56 50 58 52 54	31 37 25 31 33 37 34 33 36	12 18 14 16 15 19 15	67 8 65 65 66 69	277 384 438 396 440 530 461 276 420	82 118 82 85 91 93 99 96 83	104 122 80 136 104 110 96 104 112	3.3 2.6 2.6 2.4 3.0 2.9 3.1 2.5 3.0	85 94 .0 .5 3.2 .2 .0 82 16		674 852 666 719 735 820 a744 694 4751	0.92 1.16 .91 .98 1.00 1.12 1.01 .94		272 286 242 252 275 277 284 265 282	45 0 0 0 0 0 0 0 39	49 59 57 59 55 60 54 51 54	3.2 4.3 4.2 4.5 4.1 5.0 4.0 3.4	1,150 1,340 1,070 1,230 1,200 1,290 1,290 1,230 1,230	3.0 7.5 7.7 7.8 7.7 7.9 7.9 7.9 7.8 7.6
Dec. 3, 1958	2.24							252	. 500.22	16	T						194	0			466	7.3
								2277	. CHICK	EN CREEK	NEAR AM	ARILLO										
Dec. 3, 1958	1.70							213		225							185	10			350	3.2
						*		2278	. COETA	S CREEK N	EAR AMAI	RILLO										
Dec. 3, 1958	0.86							213		16							177	2			424	7.5

 $^{^{\}rm 1}$ Part of the flow of East Amarillo Creek is effluent from a sewage treatment plant. a Residue on evaporation at $180\,^{\circ}{\rm C}_{\odot}$

RED RIVER BASIN

2999.3. SALT FORK RED RIVER NEAR HEDLEY, TEX.

LOCATION. --One mile downstream from Whitefish Creek and 9.5 miles northeast of Hedley, Donley County.

DRAINAGE AREA. --868 square miles, of which 209 square miles is probably noncontributing.

RECORDS AVAILABLE. --Chemical analyses: March 1956 to September 1959.

Water temperatures: March 1956 to September 1959.

EXTREMES, 1958-59. --Dissolved solids: Maximum, 1,810 ppm Mar. 11-14, 16, 20, 22, 25, 28; minimum, 563 ppm Mar. 5.

Hardness: Maximum, 841 ppm Mar. 11-14, 16, 20, 22, 25, 28; minimum, 275 ppm Jan. 8.

Specific conductance: Maximum daily, 2,700 micromhos Mar. 11; minimum daily, 768 micromhos May 27.

Water temperatures: Maximum, 90°F Sept. 4; minimum, 34°F Dec. 14.

EXTREMES, 1956-59. --Dissolved solids: Maximum, 2,600 ppm Apr. 30, 1956; minimum, 231 ppm Aug. 29, 1957.

Hardness: Maximum, 1,640 ppm Apr. 30, 1956; minimum, 126 ppm Aug. 29, 1957.

Specific conductance: Maximum daily, 3,530 micromhos Jan. 25, 1957; minimum daily, 382 micromhos Aug. 29, 1957.

Water temperatures: Maximum, 95°F June 30, 1957; minimum, freezing point Jan. 16-18, 1957, Feb. 17, 1958. REMARKS. - Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined

constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available. No flow during much of the period

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Dis-	Silica	Iron	Cal-	Mag-	So- Po	- 1	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids	Hard as C	iness aCO ₃	Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	(Ca)	ne- sium (Mg)	dium tas (Na) (K	m	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Nov. 14-30, 1958 Dec. 1-15 Dec. 16-31	::	28 24 22		116 124 144	36 38 40	158 145 145		202 196 201	332 358 418	188 173 168	0.8 .6 .6	2.8 2.5 2.5		992 992 1,040	1.35 1.35 1.41		438 466 524	272 306 360	44 40 38	3.3 2.9 2.8	1,490 1,460 1,550	7.8 7.7 7.8
Jan. 4-7, 9-14, 1959 Jan. 8	73.8	32 39 32	*	91 69 121	34 25 44	126 4 113 178	.9	176 129 192	283 227 402	153 124 205	.8 .6 .8	4.5 2.2 3.5		862 696 1,080	1.17 .95 1.47		367 275 483	223 169 326	42 47 44	2.9 3.0 3.5	1,260 1,040 1,620	8.2 8.2 8.2
17, 20 Feb. 2	2.0	30 45		119 144	42 53	155 179		184 175	386 518	175 198	.7	4.8 3.5		1,000	1.36		470 578	318 434	42 40	3.1 3.2	1,510 1,800	8.2
18, 19 Feb. 22-28		16 24		74 152	24 56	91 193		110 183	234 556	103 210	.7	1.5		1,280	.86 1.74		283 610	193 460	41 41	2.3 3.4	956 1,870	8.1 8.1
Mar. 1-4, 6-10 Mar. 5 Mar. 11-14, 16, 20, 22,		17		1 51 72	50 24	152 81		155	504 218	182 101	.7	1.0		1,140 a563	1.55		582 278	455 196	36 39	2.7	1,710 917	7.6 8.2
25, 28 Mar. 15, 17-19, 21, 23-24, 26-27, 29 Apr. 1-10 Apr. 11-23		24 24 36 38		149 110 96	74 54 50 46	278 172 154 162	7.0	184 156 106 95	534 475 428	198 176 180	.9 .7 .9	2.5 2.5 2.0		1,810 1,210 1,060 1,000	1.65 1.44 1.36		594 480 428	466 393 350	39 41 45	3.1 3.1 3.4	1,800 1,570 1,490	7.6 8.2 7.6 7.5
May 5-6, 9-17, 19-21 May 7-8 May 22-30 June 1-9		36 25 28 34		103 86 92 95	41 23 24 35	155 101 109 125		132 160 173 130	386 222 238 334	177 115 122 139	.8 .7 .7	1.8 3.0 2.5 2.0		a966 711 717 872	1.31 .97 .98 1.19		426 309 328 381	318 178 186 274	44 42 42 42	3.3 2.5 2.6 2.8	1,460 1,060 1,080 1,250	7.5 7.8 7.8 7.7
Sept. 3-15		40 46		104 100	36 36	120 134		141 137	340 358	138 141	.9	1.8		904 911	1.23		408 398	292 285	39 42	2.6 2.9	1,280 1,280	8.0 7.9

a Calculated from determined constituents.

RED RIVER BASIN -- Continued

3150. LITTLE WICHITA RIVER NEAR HENRIFTTA, TEX.

LOCATION.--At gaging station at bridge on State Highway 148, 1.5 miles northwest of Henrietta, Clay County, and 4 miles upstream from Turkey Creek. DRAINAGE AREA.--1,037 square miles.

RECORDS AVAILABLE.--Chemical analyses: December 1952 to January 1956, March to September 1959.

RECORDS AVAILABLE. --Chemical analyses: December 1952 to January 1956, March to September 1959.

Water temperatures: December 1952 to January 1956, March to September 1959.

EXTREMES, 1959. --Dissolved solids: Maximum, 1,430 ppm Sept. 5; minimum, 63 ppm June 23.

Hardness: Maximum, 350 ppm Sept. 5; minimum, 31 ppm June 23.

Specific conductance: Maximum daily, 2,740 micromhos Sept. 5; minimum daily, 100 micromhos June 23.

EXTREMES, 1952-56, 1959. --Dissolved solids: Maximum, 1,700 ppm Mar. 15-16, 1953; minimum, 57 ppm May 19, 1955.

Hardness: Maximum, 700 ppm May 1, 1953; minimum, 25 ppm Feb. 20, 1955.

Specific conductance: Maximum daily, 5,910 micromhos May 1, 1953; minimum daily, 81 micromhos Oct. 24, 1953.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631.

Chemical analyses, in parts per million, March to September 1959

						,			10 1 2m Fo		T		о вере	ember 193								
	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved so alculate		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₂)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Mar. 11, 1959 Mar. 12-16 Mar. 17-26 Mar. 27-31, Apr. 1-3 Apr. 4-15 Apr. 16-17 Apr. 18-30	a0 a2.60 a12.2 a0 a0 a7.50 a18.0	2.2 5.2 9.2 8.2 6.8 7.8 8.6		88 92 32 34 36 33 20	23 27 11 11 12 9.4 4.9	25 26 5 5 61 62	1 1 5 4.4	178 169 170 179 194 170 88	15 17 10 11 13 11 7.0	505 532 60 64 71 72 26	0.3 .3 .2 .2 .2 .3 .4	0.8 .8 .8 .8 2.0 5.9		980 1,020 b270 b284 b312 b300 140	1.33 1.39 .37 .39 .42 .41	7.16 8.89 6.08 6.80	314 340 125 130 140 121 70	168 202 0 0 0 0	64 62 47 48 48 53 42	6.3 6.1 2.0 2.1 2.2 2.4 1.2	1,860 2,000 491 518 559 529 258	7.7 7.4 8.2 7.4 7.9 7.8 7.4
May 1-11	a14.0 471	8.8 9.6		23 78	6.1 23	28 34:		102 128	7.2 25	35 642	.2	3.5		162 1,190	1.62	6.12 1,510	82 289	0 184	43 72	1.3	308 2,300	7.4 7.8
13-24		8.8 9.8 7.8 8.4 9.4 6.4 4.2		34 34 58 30 17 6.8 32 14	8.5 9.3 17 8.5 5.0 3.4 8.3 4.4	9 8! 22 9: 3! 10 8!	9 7 7 -	108 124 83 107 120 71 39 80 60	9.4 11 16 9.2 6.4 4.4 7.6 4.0	161 142 440 156 193 56 10 164 18	.3 .4 .4 .4 .3 .2 .2	4.4 3.0 3.5 3.5 3.0 2.5 1.0 2.0		376 5382 811 5390 5186 63 345 97	.51 .52 .1.10 .53 .25 .09 .47	54.3 .01 278 21.1 615 388 1,540 157	120 123 214 110 126 63 31 114 53	32 22 146 22 28 5 0 48 4	64 61 70 66 57 42 63 35	3.8 3.5 6.7 4.0 2.1 .8 3.6 .8	739 688 1,580 704 832 310 116 673 174	7.6 7.2 7.2 7.3 7.4 7.1 7.2 8.2 6.7
July 3-10	46.3 59.0 36.0 8.90 7.60 258 7.36 a0 a0	11 11 10 12 16 14 9.0		39 14 43 14 20 27 31 82	12 4.9 13 4.1 5.5 6.9 8.3 22	131 24 126 13 25 34 45		80 89 81 78 99 63 94 113 122 61	11 5.2 10 3.2 4.4 5.4 5.6 14	250 139 23 136 241 17 31 50 72 538	.3 .3 .3 .3 .3	2.0 3.5 2.0 1.5 1.5 1.2 1.5 2.0		495 126 495 94 146 b210 b250 941	.67 .17 .67 .13 .20 .29 .34 1.28	61.9 12.2 10.2 65.5 2.90 2.29	147 108 56 110 161 52 72 96 112 295	82 35 0 46 80 0 0 3 12 245	66 48 63 36 43 44 47 64	4.7 1.4 4.3 .8 1.3 1.5 1.8 6.2	961 605 223 591 950 167 266 353 435 1,820	7.1 7.0 7.5 6.9 7.4 7.0 7.2 6.8 6.8
Sept. 3-4	138 221 59.3 a1.45 a17.3	8.6 14 9.6 9.6 . 8.0		14 96 29 32 36	4.8 27 7.9 9.2 9.4	35 409 94 111 134		55 48 97 196 93	6.6 29 11 11 14	54 825 152 184 232	.1 .5 .4 .4	2.0 6.3 2.2 1.0		152 1,430 b367 b430 b497	.21 1.94 .50 .58 .68	56.6 853 58.8 1.68 23.2	55 350 105 118 128	10 311 26 31 49	58 72 66 67 69	2.1 9.5 4.0 4.4 5.1	281 2,740 680 793 935	6.9 7.7 7.3 6.9 6.9
Weighted average	c79.4	8.9		21	6.1	50		69	6.6	85	0.3	2.4		218	0.30	46.7	78	21	58	2.5	404	

a Includes days of less than 0.05 cubic feet per second discharge.

b Residue on evaporation at 180°C.

c Represents 99 percent of flow for water year October 1958 to September 1959.

RED RIVER BASIN -- Continued

3154. LITTLE WICHITA RIVER NEAR RINGGOLD, TEX.

LOCATION. -- At gaging station at bridge on County Road (abandoned) 2 miles downstream from East Fork Little Wichita River, about 8 miles northwest of Ringgold, Montague County, and

about 11.5 miles upstream from mouth.

DRAINAGE AREA.--1,350 square miles, approximately.

RECORDS AVAILABLE.--Chemical analyses: March to September 1959.

EXTREMES, 1959.--Dissolved solids: Maximum, 2,810 ppm Mar. 16-18; minimum, 38 ppm Sept. 4.

Hardness: Maximum, 770 ppm Mar. 16-18; minimum, 19 ppm Sept. 4.

Specific conductance: Maximum daily, 5,200 micromhos Mar. 18; minimum daily, 60 micromhos Sept. 4.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for the period March to September 1959 given in Vater-Supply Paper 1631.

Chemical analyses, in parts per million, March to September 1959

Part Part		Mean			Cal-	Mag-		Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		solved so		Hard as C	dness aCO;	Per-	So- dium	Specific conduct-	
Mar. 19-26, 26	Date of collection		Sílica (SiO ₂)	Iron (Fe)	55333554		dium	ium		- ASSESSED 1	100000000000000000000000000000000000000		trate	ron	per mil-	per acre-	per	cium, magne-	carbon-	50-	adsorp- tion	micro-	pН
No. 11, 12 (12°) s.m. 191 8.0 15 4.3 34 71 7.4 44 3 1.0 1.49 2.0 76.8 55 0 57 2.0 2.92 7.0	Mar. 19-24, 26 Mar. 25 Mar. 27-30 Mar. 31, Apr. 1-9 Apr. 10-16 Apr. 17-18	a5.99 .10 0 0 0 a18.5	7.4 13 9.2 6.6 6.2 6.6		34 38 42 44 42 35	13 12 11 14 14	73 100 82 84 76 80 40	5.0	176 190 203 220 216 192	14 17 15 16 7.2 9.6 8.0	98 132 103 109 101 94 47	.3 .3 .3 .3 .4 .2	.4 1.0 .5 1.0 .5 .8 4.8		6348 6415 363 6406 6384 6348	.47 .56 .49 .55 .52	5.63 .11 17.4	138 144 150 168 162 128	0 0 0 0 0 0	54 60 54 51 51 57	2.7 3.6 2.9 2.8 2.6 3.1	629 747 667 721 684 624	8.1 7.8 3.1 8.2 6.C 7.3 7.3
July 1-3	May 11, 12 (12 p.m 12m)	191 270 72.2 3.00 a3.19 a11.0 199 64.5	8.0 13 8.2 10 7.8 8.0 9.2		15 145 37 48 31 16 49	4.3 42 9.1 11 9.1 4.4	34 640 113 169 105 29 205		71 107 99 77 107 114 73 102	7.4 26 11 16 9.6 4.8	44 1,280 199 508 302 167 37 372	.3 .3 .2 .4 .4 .3	1.0 7.5 4.0 2.5 3.0 3.5 3.0		149 2,210 430 612 b416 139 716	.20 3.01 .58 .83 .57 .19	76.8 1,610 83.8 5.27 12.4 74.7	55 534 130 220 165 115 58 180	0 447 49 157 78 22 0 96	57 72 65 69 66 52 71	2.0 12 4.3 5.7 4.2 1.6 6.6	292 4,120 854 1,840 1,190 752 257 1,390	7.6 7.1 7.2
July 10, 14-15	July 1-3																		1 13				6.8 6.5
Sept. 2-3	July 10, 14-15	23.3 151 10.0 3.38 a.08 a3.93 1.57	10 11 12 13 14 16 10		28 16 36 24 32 32 29	7.1 3.6 9.0 6.4 8.5 8.7 9.6	67 19 104 32 34 36 93		81 70 108 104 140 142 78	7.6 7.0 15 5.6 5.4 5.4	119 20 176 44 48 50 168	.3 .2 .3 .3 .3	1.0 2.2 1.0 1.2 .8 1.2		280 113 406 178 212 5235 5392	.38 .15 .55 .24 .29 .32 .53	17.6 46.1 11.0 1.62 .05 2.49 1.66	99 55 127 86 115 116 112	33 0 38 1 0 0	59 43 64 44 39 40 64	2.9 1.1 4.0 1.5 1.4 1.5 3.8	532 199 760 325 390 392 693	6.7 6.7 7.7 7.3 6.9
	Sept. 2-3	68.0 383 311 44.2 33.1 415 47.0	7.6 7.6 8.4 8.8 8.8 11 7.8 8.2		18 5.2 11 26 30 9.5 46 30	5.6 1.5 3.2 7.0 8.5 2.6 13 8.1	44 4 20 68 83 9 192 105	.3	62 22 50 98 115 44 77 73	5.8 2.6 5.0 7.6 9.0 4.6 15	74 4.0 26 107 132 9.0 358 185	.2 .1 .3 .4 .4 .2 .4	1.2 2.0 1.8 2.0 .8 .8 2.2 1.2		186 38 101 b288 b350 69 b722 388	.25 .05 .14 .39 .48 .09 .98	34.1 39.3 84.8 34.4 31.3 77.3 91.6 9.64	68 19 41 94 110 34 168 108	17 1 0 13 16 0 106 48	58 33 52 61 62 37 71 68	2.3 .4 1.4 3.0 3.4 .7 6.4 4.4	352 60 179 521 619 111 1,280 750	7.0 6.9 7.2 7.3 6.8

a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at $180\,^{\circ}\text{C}$.

3160. RED RIVER NEAR GAINESVILLE, TEX.

LOCATION. -- At gaging station at bridge on U. S. Highway 77, a quarter of a mile downstream from Gulf, Colorado and Santa Fe Railway bridge, 5 miles downstream from Fish Creek, 7 miles north of LOCALIUM. --At gaging station at pringe on 0. S. Highway //, a quarter of a mile downstream from Gainesville, Cooke County, and at mile 791.5.

DRAINAGE AREA. --30.782 square miles, of which 5,936 square miles is probably noncontributing.

RECORDS AVAILABLE. --Chemical analyses: May 1944 to April 1946, October 1952 to September 1959.

Water temperatures: October 1952 to September 1959.

Water temperatures: October 1952 to September 1959.

FXTREMES. 1958-59. -Dissolved solids: Maximum 4.690 npm Apr. 20: minimum 472 npm Sept. 5.

Hardness: Maximum, 1,220 ppm Aug. 16-22; minimum, 185 ppm Sept. 5.

Specific conductance: Maximum daily, 7,920 micromhos Aug. 18: minimum daily, 802 micromhos Sept. 5.

Water temperatures: Maximum, 91°F Aug. 3; minimum, freezing point Jan. 21.

EXTREMES, 1944-46, 1952-59.-Dissolved solids: Maximum, 5,480 ppm Apr. 11, 1953; minimum, 115 ppm Nov. 4, 1957.

EXTREMES, 1944-46, 1952-59,--Dissolved solids: Maximum, 6,480 ppm Apr. 11, 1953; minimum, 110 ppm Nov. 4, 1957.
Hardness: Maximum, 1,510 ppm Apr. 11, 1953; minimum, 81 ppm Nov. 4, 1957.
Specific conductance: Maximum daily, 9,890 micromhos Apr. 11, 1953; minimum daily, 176 micromhos Nov. 4, 1957.
Water temperatures (1952-59): Maximum, 95°F July 13, 1954; minimum, freezing point Dec. 23, 1953, Jan. 21, 1954, Jan. 16-17, 1957, Jan. 21, 1959.
REMARKS.--Records of specific conductance of daily samples for period May 1944 to April 1946 available in district office at Austin, Tex. Records of specific conductance of daily samples for period October 1952 to September 1959 available in district office at Oklahoma City, Okla. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631.

Chemical analyses, in parts per million, water year October 1958 to September 1959

Date of collection	Mean			Cal-	Mag-	So- Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dis	solved so		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium tas- sium (Na) (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pН
Oct. 1-2, 1958 Oct. 3-31 Nov. 1-10 Nov. 11-13 Nov. 14-20 Nov. 21-30	759 240 149 139 198 208	11	0.00	340 258 284 240 216 248	88 72 66 85 78 88	976 785 606 5.5 686 551 676	158 148 244 a240 192 196	800 597 517 530 470 574	1,680 1,350 1,160 1,200 1,000 1,200	0.4	::		4,110 3,280 2,920 3,040 2,630 3,120	5.59 4.46 3.97 4.13 3.58 4.24	8,420 2,130 1,170 1,140 1,410 1,750	1,210 940 980 950 860 980	1,080 818 780 753 702 820	64 64 57 61 58 60	12 11 8.4 9.7 8.2 9.4	6,360 5,240 4,640 4,770 4,100 4,840	7.9 7.9 8.2 8.3 8.2 8.1
Dec. 1-31	200 225 218	14 13 7.5	.00	258 288 292	77 85 93	728 8.0 820 7.0 925	b264 236 190	573 671 750	1,200 1,400 1,550	.3	0.0		3,130 3,590 3,860	4.26 4.88 5.25	1,690 2,180 2,270	960 1,070 1,110	744 876 995	62 62 64	10 11 12	4,810 5,500 6,110	8.3 7.8 8.0
Feb. 1-20	244 197 196 180 146 160	9.0 8.0 7.5 5.5 6.5	.00	302 286 270 194 274 216	92 92 92 63 101 112	975 7.5 964 850 592 949 837	204 202 200 178 194 232	746 761 686 492 716 643	1,600 1,600 1,500 975 1,580 1,390	.3 .5 	::		3,980 3,940 3,690 2,590 3,790 3,500	5.41 5.36 5.02 3.52 5.15 4.76	2,620 2,100 1,950 1,260 1,490 1,510	1,130 1,090 1,050 745 1,100	963 924 886 599 941 810	65 66 64 63 65 65	13 13 11 9.4 12	6,170 6,150 5,800 4,160 5,920 5,190	8.1 7.7 6.8 8.2 8.1 8.2
Apr. 1-10	194 309 652 1,530 3,525 1,190 885 788			224 222 300 147 79 214 78 238	84 82 100 40 24 59 22 70	665 714 1,170 356 177 462 178 672	158 144 116 c184 142 140 124 138	576 608 815 257 135 614 125 650	1,150 1,200 1,950 625 298 725 310 1,100		5.9 4.2 4.6 5.0		3,000 3,080 4,690 1,800 894 2,280 900 2,960	4.08 4.19 6.38 2.45 1.22 3.10 1.22 4.03	1,570 2,570 8,260 7,440 8,510 7,330 2,150 6,300	905 890 1,160 530 295 775 285 880	776 772 1,060 379 1,78 660 184 767	61 64 69 59 57 56 58 62	9.6 10 15 6.7 4.5 7.2 4.6 9.8	4,580 4,730 7,150 2,770 1,440 3,340 1,440 4,470	8.1 8.0 8.0 8.3 8.0 8.1 8.2 8.1
May 1-9 May 10 May 11 May 12-23	292 575 1,980 4,400 10,140	::		220 139 260 153 136	57 45 50 24 20	645 350 696 359 244	136 156 a144 120 120	571 302 699 380 332	1,050 600 1,080 540 360		3.1 5.0 .1		2,760 1,600 3,140 1,630 1,270	3.75 2.18 4.27 2.22 1.73	2,180 2,480 16,790 19,360 34,770	785 530 855 480 420	674 402 737 382 322	64 59 64 62 56	10 6.6 10 7.1 5.2	4,280 2,610 4,570 2,520 1,920	8.2 8.0 8.3 7.9 7.5
June 1-5	5,106 4,390 2,520 1,286 826 1,020 13,100 15,580		=======================================	147 172 246 304 276 131 79 126	23 32 43 55 60 25 13 17	261 402 571 834 795 335 149 273	112 128 128 152 148 108 5132 110	353 409 644 807 748 306 138 288	400 640 890 1,300 1,250 530 225 415	=	4.9 .5 .5 3.9 5.1 3.6		1,390 1,740 2,540 3,470 3,240 1,420 694 1,210	1.89 2.37 3.45 4.72 4.41 4.93 .94 1.65	19,160 20,620 17,280 12,050 7,230 3,910 24,550 50,900	460 560 790 985 935 430 250 385	368 455 685 860 814 342 142 295	55 61 61 65 65 63 56 61	5.3 7.4 8.8 12 11 7.0 4.1 6.0	2,020 2,850 3,940 5,360 5,120 2,360 1,170 1,980	8.2 7.7 8.2 8.1 7.8 8.2 8.3 8.2

a Includes equivalent of 6 parts per million of carbonate (CO3).

Includes equivalent of 2 parts per million of carbonate (CO3).

c Includes equivalent of 8 parts per million of carbonate (CO3).

RED RIVER BASIN--Continued

3160. RED RIVER NEAR GAINESVILLE, TEX .-- Continued

	Mean			Cal-	Mag-	So- Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	HODE V.50.03	solved so		Hard as Co	iness cCO,	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium tas- sium (Na) (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25' C)	pН
July 1-3, 1959	4,090			128	24	263	102	331	400		0.2		1,240	1.69	L3,690	420	336	58	5.6	1,970	7.9
July 4-5	12,000			180	33	362	116	454	570		.0		1.730	2.35	56,050	585	490	5.7	6.5	2,620	7.9
uly 6-10	4,560			139	25	252	108	369	372		1.9		1,230	1.67	15,140	450	362	55	5.2	1,960	7.7
uly 11-16	3,870			157	31	312	112	390	495		2.4		1,560	2.12	16,300	520	428	5.7	5.9	2,430	8.1
July 17-20	5,998			101	1.7	242	102	228	370		3.8		1,100	1.50	17,810	320	236	62	5.9	1,730	3.0
July 21-24	3,080		17.7	125	25	290	108	292	462		2.2		1,280	1.74	10,640	415	326	60	6.2	2,080	8.1
July 25-31	1,633			232	37	601	122	584	920		3.8		2,530	3.44	11,160	730	630	64	9.7	3,860	8.1
Aug. 1-4	1,995			180	51	447	128	447	750		3.9		2,040	2.77	10,990	660	555	60	7.6	3.260	8.0
Aug. 5-10	818			110	25	293	136	249	455		2.9		1,250	1.70	2,760	378	266	63	6.5	2,100	8.1
Aug. 11-15	499			176	57	508	156	432	850		2.8		2,200	2.99	2,960	675	547	62	8.5	3,550	8.1
Aug. 16-22	655			348	85	1,120	134	984	1,780				4,480	6.09	7,920	1,220	1.110	67	14	6.880	7.0
Aug. 23-26	674			144	45	390	128	355	650		2.6		1,720	2.34	3,130	545	440	61	7.3	2,880	5.0
Aug. 27-31	317			168	117	774	136	681	1,250				3,200	4.35	2,740	900	788	65	11	5,070	7.9
Sept. 1-2	290			224	65	711	134	615	1.150				2,900	3.94	2,270	825	715	65	11	4,620	8.0
Sept. 3	650			147	41	438	128	378	700		1.0		1,840	2.50	3,230	535	430	64	8.2	2,980	7.5
Sept. 4	1,250			66	21	167	114	137	265		3.3		759	1.03	2,560	250	156	59	4.6	1,260	7.9
Sept. 5	1,960			48	16	93	104	73	160		.8		472	.64	2,500	185	100	52	3.0	802	7.7
Sept. 6	2,430			70	24	186	98	147	315		3.2		859	1.17	5,640	275	194	60	4.9	1,420	7.8
Sept. 7-8				50	18	108	104	88	182		3.0		558	. 76	5,880	200	115	54	3.3	962	7.9
Sept. 9	2,340			66	23	1.72	98	117	305		2.0	1	796	1.08	5,030	260	180	59	4.6	1,330	7.8
Sept. 10	1,100			118	38	293	118	137	600		1.2		1,480	2.01	4,400	450	354	59	6.0	2,400	7.7
Sept. 11	726			98	34	255	108	200	455		1.3		1,190	1.62	2,330	385	296	59	5.6	1.970	7.7
Sept. 12-20	416			162	55	477	132	412	800		3.8		2,060	2.80	2,310	630	522	62	8.3	3,250	7.8
Sept. 21-28	238			192	71	561	142	476	975		3.1		2,530	3.44	1,630	770	654	61	8.8	4,010	7.6
Sept. 29-30	6,110			109	27	233	132	249	370		5.2		1,120	1.52	18,480	385	277	57	5.2	1,830	7.9
Weighted average	1,534		T	154	31	359	125	375	566				1,640	2.23	6,790	512	409	60	6.9	2,560	

RED RIVER BASIN -- Continued

3316. RED RIVER AT DENISON DAM NEAR DENISON, TEX.

LOCATION.--Immediately below Denison Dam, 1.7 miles upstream from Sand Creek, 4 miles northwest of Denison, Grayson County, and 3 miles upstream from gaging station near Colbert, Bryan County, Okla. DRAINAGE AREA.--39,719 square miles above dam, 39,777 square miles above gaging station, of which 5,936 square miles is probably noncontributing.

RECORDS AVAILABLE.--Chemical analyses: May 1944 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 1,140 ppm July 1-31, Aug. 1-31, Sept. 1-30; minimum, 1,020 ppm Oct. 1-31.

Hardness: Maximum, 300 ppm Aug. 1-31; minimum, 300 ppm Dec. 1-31.

Specific conductance: Maximum daily, 1,980 micromhos May 7; minimum daily 1,720 micromhos Oct. 2.

EXTREMES, 1944-59.--Dissolved solidis: Maximum, 1,140 ppm Aug. 1-20, Sept. 1-10, 1944; minimum, 464 ppm Oct. 21-31, 1945.

Hardness: Maximum, 522 ppm Aug. 11-20, Sept. 1-10, 1944; minimum, 233 ppm Dec. 21-31, 1945, Jan. 11-20, 1946.

Specific conductance: Maximum daily, 3,520 micromhos Aug. 14, 1944; minimum daily, 656 micromhos Oct. 16, 1945.

REMARNS.-Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for gaging station near Colbert, Okla. for water year October 1958 to September 1959 given in Water-Supply Paper 1631. No appreciable inflow between dam and gaging station except during periods of heavy local rains.

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Mean dis-	Silica		Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved so		Hard as C	iness aCO,	Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-31, 1958 Nov. 1-30	1,823 1,912	8.8 9.8		99 101	24 31		34 28	138 136	218 225	365 375	::	0.5		1,020	1.39	5,020 5,370	346 380	232 268	60 57	5.5 5.1	1,770	6.2 7.9
Dec. 1-31	1,483 2,268	9.0 10		41 104	48 28	238	70 5.3	136 139	230 238	380 382	0.4	.5		1,050 1,070	1.43 1.46	4,200 6,550	300 374	188 260	55 58	6.8 5.3	1,840 1,870	8.0
Feb. 1-28 Mar. 1-31	772 2,432	9.0 9.2		104 108	29 26		45 42	140 135	243 243	385 382	.2	.2		1,080 1,080	1.47	2,250 7,090	378 376	264 266	58 58	5.5	1,870 1,880	8.2
Apr. 1-30 May 1-31	2,263 712	8.8		108 108	26 27	238	5.6	139 140	238 245	378 380	. 5	.5		1,070 1,080	1.46 1.47	6,540 2,080	3.76 380	262 266	57 58	5.3 5.4	1,850 1,870	7.8 7.5
June 1-30 July 1-31	2,117 3,952	8.4		105 110	25 26		51 64	142 138	245 259	382 405	.3	.0		1,090	1.48 1.55	6,230 12,160	365 382	248 268	60 60	5.7 5.9	1,860	7.8 7.0
Aug. 1-31	4,623 3,074	10 9.2		112 108	27 26		60 63	131 124	259 266	408 402	.4	1.8		1,140 1,140	1.55 1.55	14,230 9,460	390 376	283 275	59 60	5.7 5.9	1,900 1,940	7.4
Weighted average	2,298	9.4		104	28	2	52	135	246	390		0.8		1,100	1.50	6,830	374	264	59	5.7	1,880	

RED RIVER BASIN -- Continued

3425. SOUTH SULPHUR RIVER NEAR COOPER, TEX.

LOCATION.--At gaging station at bridge on State Highway 154, 0.6 mile downstream from Big Creek, 1.0 mile upstream from Brushy Creek, and 5.7 miles southeast of Cooper, Delta County. DRAINAGE AREA.--527 square miles.

RECORDS AVAILABLE.--Chemical analyses: October 1958 to September 1959.

Water temperatures: October 1958 to September 1959.

Water temperatures: October 1938 to September 1939.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 432 ppm Nov. 18-20; minimum, 125 ppm Apr. 17-21.

Hardness: Maximum, 164 ppm Nov. 18-20, May 1-11; minimum, 69 ppm Apr. 17-21.

Specific conductance: Maximum daily, 904 micromhos Nov. 18; minimum daily, 142 micromhos Nov. 16.

Water temperatures: Maximum, 91°F Aug. 5; minimum, 42°F Dec. 18, Jan. 5.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631.

Chemical analyses, in parts per million, water year October 1958 to September 1959

		,			Chem	ical ana	yses, 1	n parts p	er milli	on, water	year o	cober 1	958 to	September	1939							
	Mean				Mag-		Po-								ssolved so		Hard as C		Per-	So-	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	So- dium (Na)	tas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO,)	ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	dium adsorp- tion ratio	ance (micro- mhos at 25 C)	pН
Oct. 1-10, 1958 Oct. 11-20 Nov. 1-14 Nov. 15-17 Nov. 18-20 Nov. 21-30	a0.05 29.3 a .04 a .02 24.7 11.7 32.0	12 9.8 11 11 8.4 10 8.2		43 27 34 47 25 55 39	4.6 3.1 3.7 5.6 4.1 6.7 4.2	2 2 2 3 1 10 3	3 5 6 5 3	151 101 125 165 104 139 147	32 30 29 44 15 60 32	14 10 14 25 7.5 148 28	0.5 .4 .4 .4 .4	3.2 1.8 .5 .8 .5 1.2		b218 155 179 b262 127 452 222	0.30 .21 .24 .36 .17 .61	0.03 12.3 .02 .01 8.47 14.3 19.2	126 80 100 140 79 164 115	2 0 0 5 0 50	30 39 35 36 30 58 41	1.0 1.1 1.1 1.3 .8 3.5 1.5	348 262 302 429 222 815 398	7.9 7.5 7.5 8.2 7.3 7.6 7.7
Dec. 1-17	17.1 5.89 28.6 23.0 2.02	11 12 11 9.8	97	38 46 33 33 51	3.7 4.6 3.2 4.1 5.4	47 47 12 6	2 4 4.1 4	128 164 108 93 134	40 52 40 32 45	26 24 46 180 93	.5	2.5 1.8 5.0 5.0 2.0		b236 b276 243 434 b360	.32 .38 .33 .59 .49	10.9 4.39 18.8 27.0 1.96	110 134 96 99 149	5 0 7 23 39	41 41 50 73 49	1.5 1.6 2.1 5.4 2.3	374 439 427 803 606	7.6 7.5 7.4 7.4 7.5
Feb. 1-14	832 6.94 3.02 132 594 548	8.8 13 14 15 10 11 13 9.6		52 31 44 52 32 36 26 39	6.0 2.9 4.6 6.3 3.5 2.7 3.6 4.4	6 1 2 3 1 3 1 2	9 8 2 9 3 3	154 98 145 176 107 122 92 128	45 29 39 47 29 40 22 36	84 10 18 20 9.2 20 3.8	.4 .5 .4 .4 .5 	.8 6.3 5.9 4.2 3.5 5.0 4.2 2.8		b354 160 b242 264 160 208 131 b204	.48 .22 .33 .36 .22 .28 .18	93.5 359 4.53 2.15 57.0 334 194 42.6	154 89 129 156 94 102 80 115	28 9 10 11 7 2 4	47 32 32 31 30 41 27 30	2.2 .9 1.1 1.1 .8 1.4 .7	606 264 374 435 268 355 215 324	7.9 7.8 8.0 8.1 7.6 8.2 8.1 7.6
Apr. 1-10	3.92 583 36.9 16.5	11 11 12 13 13 10 9.6		44 51 23 38 54 40 49	5.2 6.1 2.9 5.0 7.1 4.7 5.5	1 2 3 2	3.2 3 5 4 1 3 7	150 179 78 133 197 129 172	41 36 23 34 42 37 37	14 12 7.5 14 17 13	.4 .4 .4 .5 .5	2.0 1.0 3.2 2.0 1.5 6.8 3.0		b242 228 125 195 b279 198 b254	.33 .31 .17 .27 .38 .27	8.10 2.41 197 19.4 12.4 55.1 1.87	131 152 69 115 164 119 145	8 6 5 6 2 13 4	29 25 32 31 29 30 29	1.0 .8 .8 1.0 1.1 .9	374 393 208 330 446 344 406	7.7 7.5 7.6 7.7 8.0 7.7 7.4
June 1-8	99.6 348 6.76 31.0	13 12 14 18 13 14		46 33 34 43 40 29	5.0 3.5 3.0 4.4 3.8 2.6	1 1 2 2 2	9 8 2 2 2	174 117 120 144 129 91	42 22 22 32 26 19	25 10 7.2 13 23 8.2	.5 .5 .6 .6	3.0 4.0 5.1 1.8 2.5 2.8		b285 162 163 206 197 133	.39 .22 .22 .28 .27 .18	14.3 43.6 153 3.76 16.5 283	135 97 97 125 115 83	0 1 0 7 10 8	40 30 29 27 32 24	1.5 .8 .8 .8 1.0	440 275 267 355 360 241	7.6 7.5 6.6 6.5 6.4
Aug. 1-10	0 0 60.5	23 -21 18 11 14 9.0		36 46 50 26 36 42	3.4 4.3 5.0 2.4 3.5 4.2		12 14 16 11 1- 13	134 168 180 93 104 131	22 23 27 23 26 28	11 14 18 12 163 12 27	.5	2.2 1.5 1.0 3.5 1.0 .8		b197 b225 b244 145 b191 b230	.27 .31 .33 .20 .26	23.7	104 132 145 75 102 104 122	0 0 0 0 17 0 2	31 28 28 38 32 35	.9 .9 .9 1.1 1.0 1.2	297 351 394 250 766 300 377	7.6 7.8 7.6 7.4 7.7 7.7
Weighted average		13		32	3.2		21	106	26	14	0.5	3.7		167	0.23	41.1	93	6	33	0.9	285	

a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at $180\,^{\circ}\text{C}\text{.}$

RED RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS

	i			Cal-	Mag.	-	Bicar-	Sul-	Chlo-	Fluo	N.	è	Ω̈́	Dissolved solids (calculated)	lids	Har	Hardness as CaCO,	Per-	So-	Specific conduct-	
Date of collection	charge (cfa)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium sium (Na) (K)	bonate (HCO,)	fate (SO,)	ride (CI)	ride (F)	(NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	Ha
						2985.	100000	PRAIRIE DOG TO	TOWN FORK R	RED RIVE	RIVER NEAR BRICE	SRICE									
Mar. 24, 1959	a0.01			255	132	1,220	248	849	1,950							1,180	716	69	1.3	7.210	6.7
						M	MULBERRY CREEK AT STATE HIGHWAY 70 NEAR BRICE	WEEK AT	STATE HIGH	WAY 70	NEAR BR	ICE									
Mar. 24, 1959				240	219	22.7	173	2,190	228							2,250	2,110	18	2.1	3,860	7.9
						LI	LITTLE RED RIVER AT STATE HIGHWAY 70 NEAR TURKEY	NIVER AT	STATE HIG	SHWAY 70	NEAR TO	JRKEY									
Mar. 24, 1959	a0.02			1,770	1,050	97,700	105	5,290	102,000							8,750	8,660	76	301	132,000	(D)
							ESTE	LINE SAI	ESTELLINE SALT SPRING AT ESTELLINE	AT ESTE	TLINE										
Feb. 12, 1959	0.4			1,460	273	17,100	139	4,230	26,300							4,760	4,650	89	107	61,600	6.1.
,				SALT	CREEK AT	T COUNTY ROAD CONNECTING		FM ROAD 1	ROAD 1619 AND U	US HIGHWAY	83	ABOUT 10	MILES	NORTHWEST	OF CHILDRESS	SSS					
Mar. 24, 1959				1,020	210	5,910	109	2,820	9,380							3,410	3,320	42	77	27,200	7.5
						PRAIRIE DOG	G TOWN FORK	RED	RIVER AT US	S HIGHWAY	Y 83 NE	83 NEAR CHILDRESS	ORESS								
Mar. 24, 1959				1,780	389	22,400	82	5,200	34,900							070'9	5,970	89	125	77,200	9.0
							BUCK CREEK	EK AT FM	ROAD 338	NEAR	WELLINGTON	,									
Mar. 22, 1959	a 0.08			390	187	125	247	1,610	76							1,740	1,540	13	1.3	2,860	7.8
							299	2995.7. RED) RIVER NEAR QUANAH	TAR QUAN	АН										
Mar. 25, 1959				721	197	2,670	154	2,310	4,170							2,610	2,480	69	23	14,300	7.7
						SALT FORK RED	RIVER AT	COUNTY	RIVER AT COUNTY ROAD ABOVE BARTON CREEK NEAR LELIA LAKE	: BARTON	CREEK	VEAR LEI	IA LAKE								
Mar. 22, 1959	a2			99	26	126	216	150	147							266	89	51	3.4	1,080	8.0
							BARTON (REEK 7 N	BARTON CREEK 7 MILES NORTH OF LELIA LAKE	TH OF LE	LIA LAKI	6-3									
Mar. 22, 1959	а3	36		112	7.7	276	228	402	332		6.0		1,320	1.80		473	286	36	5.5	2,070	8.13
a Field estimate.	28																				

RED RIVER BASIN--Continued
MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS--Continued

				Cal-	Mag-	So- Po-	Bicar-	Sul-	Chlo-	Fluo	ż	ģ	Dis.	Dissolved solids (calculated)	sp (Hardness as CaCO ₃	iCO,	Per-	. k	Specific conduct-	
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca.)	sium (Mg)	dium tas-	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	Hd
						SALT FORK	RED	RIVER AT CO	COUNTY ROAD		8 MILES NORTH	OF QUAIL	1								
Mar. 22, 1959	a0.25			355	98	268	169	1,240	315							1,290	1,150	31	3.2	3,050	7.7
							3000. 84	LT FORK	SALT FORK RED RIVER NEAR WELLINGTON	NEAR W	ELLINGTO	NC									
Mar. 22, 1959	8.5			545	92	188	139	1,650	225							1,740	1,630	61	2.0	3,190	7.6
						SALT F	FORK RED R	VER AT S	RIVER AT STATE HIGHWAY 203 NEAR WELLINGTON	WAY 203	NEAR WE	ELLINGT	Z.								
Mar. 23, 1959	48			630	119	271	106	1,980	355							2,060	1,970	22	2.6	3,940	7.9
							RED RIV	ER AT US	RED RIVER AT US HIGHWAY 283 NEAR ODELL	283 NEA	R ODELL										
Mar. 25, 1959				595	169	1,650	114	1,960	2,580							2,180	2,090	62	1.5	046.6	0.8
						NORTH FORK RED RIVER ABOVE MCLELLAN CREEK 34	D RIVER A	SOVE MCLE	TLLAN CREE	IK 3½ MI	MILES WEST OF	r of KE	KELLERVILLE								
Mar. 22, 1959	a6			208	112	335	149	156	1,010							980	858	73	4.7	3,560	7.9
						MCLELLAN CREEK AT MOUTH AT COUNTY ROAD 31/2 MILES WEST OF KELLERVILLE	K AT MOUT	H AT COU	NTY ROAD	3½ MILE	S WEST O	F KELLE	RVILLE								
Mar. 22, 1959	al 5	28		70	1.7	107	235	103	126		0.5		268	0.77		244	52	67	3.0	156	8.2
						NORTH FO	NORTH FORK RED RIVER AT COUNTY ROAD 6 MILES SOUTHWEST OF WHEELER	TER AT CO	UNTY ROAL	6 MILE	S SOUTH	WEST OF	WHEELER								
Mar. 22, 1959	alo			134	44	288	159	253	530							515	384	55	5.5	2,320	8.0
							3013.	ORTH FOR	NORTH FORK RED RIVER NEAR SHAMROCK	TER NEAR	SHAMRO	×									
Mar. 22, 1959	a6			235	67	310	159	565	528							790	099	949	4.8	2,740	8.0
							UNNAM	ED CREEK	UNNAMED CREEK 3 MILES EAST OF TWITTY	SAST OF	TWITTY										
Mar. 21, 1959	a0.6			790	143	70	225	1,660	35							1,810	1,630	00	0.7	2,760	7.8
							30	3033. ELM	ELM CREEK NEAR SHAMROCK	AR SHAMB	OCK										
Mar. 22, 1959	a2.0	25		225	33	104	191	607	112		0.2		1,190	1.62		697	565	24	1.7	1,580	7.9
a Field estimate.																					

RED RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS--Continued

	ë			Cal-	Mag-	Š	Ъ.	Bicar-	Sul-	Chlo-	Fluo	N.	Bo-	0)	(calculated)		as CaCO,	g g	Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	(NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	mhos at 25° C)	H _d
								ELM CRE	ELM CREEK BELOW	WOLF CREEK NEAR LUTIE	EK NEAR	LUTIE										
Mar. 22, 1959	34	13		528	85	6	76	115	1,610	70		4.0		2,460	3.35		1,670	1,570	11	1.0	2,670	7.8
							14	RED RIVER AT	AT US H	US HIGHWAY 183 NEAR OKLAUNION	3 NEAR (OKLAUNIO	N									
Mar. 25, 1959				562	192	1,920	0	113	1,850	3,080							2,190	2,100	99	1.8	11,300	7.4
							30	3077. ROA	RING SPR.	ROARING SPRINGS NEAR		ROARING SPRINGS	S									
Mar. 20, 1959	al.5 1.26			82	27	99 62	8.2	318	75	85							316	99	31	9.1	956	7.7
							MIDE	LE PEASE	RIVER 14	MIDDLE PEASE RIVER 14 MILES NORTHEAST OF PADUCAH	ORTHEAST	C OF PAD	UCAH									
Feb. 11, 1959	al.0			1,290	212	10,900		122	3,650	16,900							060'7	3,990	8.5		44,300	8.0
						SALT SPRINGS TRIBUTARY TO MIDDLE PEASE RIVER	NGS TRIB	UTARY TO	MIDDLE 3	PEASE RIV	ER 14 M	14 MILES NORTHEAST OF	THEAST	OF PADUCAH	tet							
Feb. 11, 1959	a0.02			1,390	236	13,500		108	3,980	21,100							077,7	4,350	87		52,000	7.9
							PEA	SE RIVER	AT STATE	PEASE RIVER AT STATE HIGHWAY 104 NEAR KIRKLAND	104 NE	AR KIRKL	AND									
Mar. 21, 1959				1,180	242	7,500	0	149	3,220	11,900							3,940	3,820	81	52	32,600	7.8
						Ed.	PEASE RIVE	RIVER AT I.	W. TABOR RANCH	on.	MILES SC	SOUTHWEST	OF QUANAH	NAH								
Mar. 21, 1959				926	133	3,560	0	134	2,680	5,510							2,930	2,820	7.3	29	18,000	7.9
							- E	RED RIVER	AT US HEG	HIGHWAY 281		NEAR BURKBURNETT	H									
Mar. 25, 1959				537	187	2,190	0	120	1,790	3,480							2,110	2,010	69	21	12,100	7.3
						NORTH V	NORTH WICHITA	RIVER AT	AT COUNTY F	ROAD CROSSING	~	MILES NORTHEAST	RTHEAST	OF CHALK								
Mar. 18, 1959	4.0e			465	105	321		241	1,350	485							1,590	1,390	30	3.5	3,760	7.9
							NORTH	NORTH WICHITA RIVER	RIVER AT	FM ROAD	1038 NE	FM ROAD 1038 NEAR HACKBERRY	BERRY									
Mar. 18, 1959				545	129	589	6	148	1,670	930							1,890	1,770	07	5.9	5,220	7.8

RED RIVER BASIN--Continued
MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS--Continued

o A	PH DH		7.6		7.8		7.8		7.5		7.9		7.3		8.0		8.1		7.6		7.2
Specific conduct-	(micro- mhos at 25° C)		47,300		23,800		21,500		11,700		10,200		14,000		39,200		36,300		1,890		2,220
So-	adsorp- tion ratio		81		4.5		34		14		11		61		63		50		6.0		10
Per-	so- dium		86		18		7.5		5.7		67		999		83		78		62		76
, 00	Non- carbon- ate		4,160		2,490		3,080		3,010		2,940		2,890		4,020		056,4		254		178
Hardness as CaCO,	Cal- cium, magne- sium		4,250		2,620		3,170		3,110		3,040		3,010		4,130		5,060		350		250
ids d)	Tons per day			DUCAH																	
Dissolved solids (calculated)	Tons per acre- foot			NEAR PA															95.1		1.63
Dis.	Parts per mil- lion			OF COTTLE-FOARD COUNTY LINE NEAR PADUCAH								UTHRIE		THRIE					1,070		1.200
Bo.	ron (B)	DUCAH		FOARD CC		TRUSCOTT				RIE		R NEAR G		ST OF GU		N					
ź	(NO,)	ST OF PA		COTTLE-		B3 NEAR		HRIE		OF GUITH		ITA RIVE		MILES EA		BENJAMI		STT	0.4	TA	0.0
Fluo-	ride (F)	SOUTHEAS		WEST OF		GHWAY 28		AT CUT		ES EAST		гн итсн		TELD 6 t		ER NEAR		HITA FAI	0.3	HENRIET	0 7
Chlo-	ride (CI)	8 MILES	18,700	1 MILE	8,020	STATE HI	6,930	TA RIVER	2,990	R 3½ MILI	2,720	Y TO SOU	3,980	AN OIL F	14,900	HITA RIV	13,400	A AT WIC	450	LONG CREEK NEAR HENRIETTA	660
Sul-	fate (SO,)	AT MOUTH	3,950	CROSSING	2,610	RIVER AT	2,890	SOUTH WICHITA RIVER AT GUTHRIE	2,720	HITA RIVE	1,990	TRIBUTAR	2,500	AT BATEM	3,230	SOUTH WICHITA RIVER NEAR BENJAMIN	3,680	LAKE WICHITA AT WICHITA FALLS	175	LONG CRE	78
Bicar-	bonate (HCO ₃)	SALI CREEK AI MOUTH 8 MILES SOUTHEAST OF PADUCAH	116	NORTH WICHITA RIVER AT COUNTY ROAD CROSSING 1 MILE WEST	154	NORTH WICHITA RIVER AT STATE HIGHWAY 283 NEAR TRUSCOTT	114	108	125	SOUTH WICHITA RIVER 3% MILES EAST OF CUTHRIE	120	BATEMAN RANCH SPRING IRLBUTARY TO SOUTH WICHITA RIVER NEAR GUTHRIE	149	SOUTH WICHITA RIVER AT BATEMAN OIL FIELD 6 MILES EAST OF GUTHRIE	129	3118.	134	LAI	118		88
Po-	tas- sium (K)	SAI	12,100	ER AT COU	5,300	NORTH	095'		1,860	01	1,360	EMAN RANC	2,450	UTH WICH!	9,360		8,180		259		163
Š	dium (Na)		12,	HITA RIV	5,		4,		1,		1,	BAT	2 ,	So	6		8,				
Mag-	sium (Mg)		263	RTH WIC	121		218		296		199		211		264		387		24		19
Cal-	cium (Ca)		1,270	NO	851		911		759		890		858		1,220		1,390		101		69
	(Fe)																				
	Silica (SiO ₂)																		5.0		0.6
i	Dis- charge (cfs)								a0.04		a0.4										50
	Date of collection		Mar. 18, 1959		Mar. 18, 1959		Mar. 19, 1959		Mar. 19, 1959		Mar. 19, 1959		Mar. 17, 1959		Mar. 19, 1959		Mar. 19, 1959		Mar. 11, 1959		Apr. 18. 1959

RED RIVER BASIN--Continued

nned	0000
Conti	
XAS-	
IN	
SASIN	
VER	
CED K	
N IN	1
IKEAM	
OF S	
LYSES	
NS ANA	
ĭ	
MISCELLAN	
E	

Dis-				0000									SIG.	Dissolved solids	ids	Hardness	ness		5	Specific	-
-810			Cal-	Mag-	So	- bo	Bicar-	Sul-	Chlo-	Fluo-	ż	Bo-	0)	(calculated)	(p	SE SE	o co	Per-	dium	conduct-	
Date of collection charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	Sium (K)	bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	(NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	H.
						. RED.R	RIVER ABO	VE LITTL	ABOVE LITTLE WICHITA RIVER NEAR RINGGOLD	RIVER	NEAR RIM	MCGOLD								1	
Oct. 7, 1958 a275	11		238	69	957	7	86	689	1,540		0.0		3,550	4.83		878	807	7.0	17	5,800	10
								CADDO LA	CADDO LAKE NEAR KARNACK	CARNACK											
July 22, 1959	15	80.0	8.0	2.7	23	3	26	1.4	31	0.2	0.2		107	0.15		31	01	19	1.8	177	5.2

SABINE RIVER BASIN

220. SABINE RIVER NEAR TATUM, TEX.

LOCATION. --At gaging station at bridge on State Highway 43, 5 miles upstream from Potter Creek, 5.2 miles northeast of Tatum, Rusk County, 7 miles downstream from Cherokee Bayou, and at mile 339. DRAINAGE AREA .-- 3,586 square miles . RECORDS AVAILABLE . -- Chemical analyses: February 1952 to September 1959. Water temperatures: February 1952 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 883 ppm Oct. 20; minimum, 92 ppm May 1-6. Hardness: Maximum, 121 ppm Oct. 20; minimum, 31 ppm May 26-30. Specific conductance: Maximum daily, 1,680 micromhos Oct. 20; minimum daily, 145 micromhos May 5.
Water temperatures: Maximum, 89°F July 17; minimum, 40°F Jan. 6.
EXTREMES, 1952-59.--Dissolved Solids: Maximum, 93 ppm Aug. 21-31, 1956; minimum, 74 ppm Apr. 24-30, 1957.
Hardness: Maximum, 121 ppm Oct. 20, 1958; minimum, 22 ppm Apr. 24-30, 1957.
Specific conductance: Maximum daily, 1,850 micromhos Oct. 25, 1954, Aug. 31, 1956; minimum daily, 98 micromhos Apr. 29, 1957.
Water temperatures: Maximum, 98°F Aug. 13, 1956; minimum, 40°F Jan. 6, 1959.
REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. Specific conductance: Maximum daily, 1,680 micromhos Oct. 20; minimum daily, 145 micromhos May 5.

					Chemic	cal anal	yses, in	parts pe	r million	n, water	year Oct	ober 19	58 to S	eptember	1959							
														Dis	solved so	lids		iness			Specific	
*	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	(c.	alculated	1)	as Co	aCO3	Per-	So- dium	conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO _i)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25' C)	рН
Oct. 1-5, 8-10, 1958 Oct. 6-7, 11-19 Oct. 20 Oct. 21-25 Oct. 26-31 Nov. 1-10 Nov. 11-20 Nov. 21-30	971 528 472 564 598 257 327 1,083	17 20 14 16 20 18 14		12 14 10 15 14	3.4 4.6 4.6 3.2 4.7 5.0 5.0	1 1 1	52 87 19 60 12 08 77	29 30 39 29 26 30 30 22	17 19 20 15 20 16 23	82 140 485 189 93 180 177 125		1.2 1.5 .8 .8 1.0 .5		199 301 883 375 211 a382 a370 a292	0.27 .41 1.20 .51 .29 .52 .50	522 429 1,130 571 341 265 327 854	44 54 121 54 38 57 56 30	20 29 89 30 17 32 31 32	72 78 83 77 81 81 77	3.4 5.1 7.0 4.2 6.5 6.3 4.7	359 559 1,680 715 385 687 673 502	7.4 7.2 7.4 7.2 7.0 7.2 6.9 6.6
Dec. 1-11	606 562 611 645	16 19 20 19 19		14 15 14 14 17 15	5.2 6.5 5.9 6.0 7.2 6.6	79	64 78 76 1 2.8 96 75	20 20 20 20 20 22 23	32 34 29 29 39 33	103 128 126 134 157 123	0.1	.5 .8 .5 1.0		a265 a318 a302 294 347 281	.36 .43 .41 .40 .47	774 520 458 485 604 398	56 64 59 60 72 64	40 48 43 43 54 46	71 72 74 73 74 72	3.7 4.2 4.3 4.5 4.9 4.1	445 542 522 553 652 534	6.8 6.7 6.7 7.0 6.7 6.8
Feb. 1-9	3,316 3,839 3,200	16 16 11 14 12 11		15 16 11 14 14 14 14	6.0 7.3 3.8 4.1 4.3 3.4 5.8		78 97 34 46 47 33 65	20 16 20 22 20 30 28	32 42 26 31 33 25 35	129 159 52 72 74 49 104	=======================================	.8 .8 1.0 .8 1.2		287 346 149 193 195 152 258	.39 .47 .20 .26 .27 .21	600 1,150 1,740 1,730 2,020 1,310 805	62 62 43 52 53 49 66	46 46 27 34 36 24 43	73 75 63 66 66 59 68	4.3 5.0 2.3 2.8 2.8 2.0 3.5	540 655 276 343 350 266 464	6.8 6.9 6.8 6.7 6.9 6.9
Apr. 1-9, 11	2,460 4,633 5,736 14,200 7,988 2,321 2,093	15 14 11 9.0 8.0 9.8 13 12		18 25 12 10 9.0 10 14 15 8.0	6.5 8.0 3.9 3.0 2.5 3.5 5.0 4.2 2.7		3.3 36 25 19 37 53 46 24	30 30 18 20 23 26 27 35	38 50 26 20 14 17 27 25 15	104 190 58 38 28 56 85 69 36	.2	1.0 1.5 1.0 1.0 1.5 1.5 2.0		262 418 157 116 92 148 212 190 106	.36 .57 .21 .16 .13 .20 .29 .26	878 2,780 1,960 1,800 3,530 3,190 1,330 1,070 1,130	72 96 46 37 33 39 56 55	47 72 31 21 14 18 33 26 16	64 72 63 59 56 67 68 64 62	3.1 5.1 2.3 1.8 1.4 2.5 3.1 2.7 1.9	486 790 290 213 172 277 402 358 198	6.5 7.3 6.9 7.2 7.0 6.8 6.3 6.6 6.4
June 1-10	867 797 455 476 301 2,005	15 14 15 19 15 17 12 18		12 14 17 14 21 18 14	4.5 4.9 6.0 5.4 7.2 5.9 3.9	1	45 47 84 68 71 95 82 31	25 36 38 40 34 52 31 54	18 21 24 21 28 20 17 15	75 75 137 106 281 150 131 41		1.2 1.5 1.5 1.2 1.2 1.2 1.2		183 195 a332 255 541 333 276 152	.25 .27 .45 .35 .74 .45 .38	819 456 714 313 695 271 1,490 755	48 55 67 57 82 70 51 52	28 26 36 24 54 27 26 8	67 65 73 72 82 75 78 56	2.8 2.8 4.5 3.9 8.2 5.0 5.0	351 362 579 475 1,030 629 517 265	6.5 6.8 6.5 6.8 6.3 6.8 6.7
Aug. 1-4, 12-15	200 202 284 470 220	19 21 21 21 21 21 20 21		18 22 22 21 12 18 18	4.2 5.9 6.7 6.3 4.4 6.4 6.0	1	51 85 .16 .19 69 98	58 73 70 - 56 36 40 50	20 17 20 15 17 25 20	74 132 182 195 107 159 193		1.2 1.0 .8 1.2 1.2 1.2		a236 a341 a422 406 a263 a360 a424	.32 .46 .57 .55 .36 .49	793 184 230 311 334 214 212	62 80 82 78 48 72 70	15 20 25 32 19 38 28	64 70 75 77 76 75 79	2.8 4.2 5.6 5.9 4.3 5.0 6.3	379 586 751 770 451 642 762	6.7 7.0 6.7 7.5 6.7 6.7

0.26

Weighted average----

a Residue on evaporation at 180°C.

305. SABINE RIVER NEAR RULIFF, TEX.

LOCATION.--At gaging station at bridge on State Highway 12, 2.4 miles north of Ruliff, Newton County, 4.2 miles upstream from Kansas City Southern Railway bridge, 4.5 miles downstream from Cypress Creek and at mile 40.

from Cypress Creek and at mile 40.

DRAINAGE AREA.--9,440 square miles.

RECORDS AVAILABLE.--Chemical analyses: October 1945 to September 1946, October 1947 to September 1959.

Water temperatures: October 1947 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 212 ppm Sept. 9, 16-24; minimum, 43 ppm Jan. 31.

Hardness: Maximum, 55 ppm Sept. 9, 16-24; minimum, 12 ppm Feb. 1-6.

Specific conductance: Maximum daily, 430 micromhos Sept. 18; minimum daily, 75 micromhos Feb. 3.

Water temperatures: Maximum, 87°F Aug. 6-7; minimum, 48°F Dec. 19-20, Feb. 3.

EXTREMES, 1945-46, 1947-59.--Dissolved solids: Maximum, 411 ppm Dec. 26-27, 1948; minimum, 32 ppm Sept. 23-26, 28-30, 1958.

Hardness: Maximum, 65 ppm Dec. 21-22, 1954; minimum, 8 ppm May 20-24, 1953.

Specific conductance: Maximum daily, 774 micromhos Dec. 26, 1948; minimum daily, 33 micromhos May 22, 1953.

Water temperatures (1947-59): Maximum, 95°F Aug. 12, 1953; minimum, 34°F Jan. 28, 1948.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved sol		Hard as Co		Per-	So-	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	dium adsorp- tion ratio	ance (micro- mhos at 25°C)	рН
Oct. 1-11, 1958 Oct. 12-16 Oct. 17-31 Nov. 1-10 Nov. 11-20 Nov. 21-30	24,480 5,196 3,219 2,633 2,462 4,096	9.8 15 17 16 17		5.2 8.0 9.5 12 10	1.5 1.9 3.0 3.3 2.8 3.0	1 3 4 3	4 8 0 4 7	18 25 34 34 35 25	7.8 12 13 14 11	18 24 42 68 54 60	 	0.5 1.0 .2 .0 .0		66 92 132 a182 a154 151	0.09 .13 .18 .25 .21	4,360 1,290 1,150 1,290 1,020 1,670	19 28 36 44 36 38	4 8 8 16 8 17	61 59 64 69 69	1.4 1.5 2.2 2.9 2.6 2.6	114 156 229 324 267 278	6.8 6.9 7.0 6.6 5.7 6.7
Dec. 1-10	3,372 2,854 2,830 2,440 2,482 2,931 9,730	16 18 18 20 18 17 5.8		9.5 11 9.2 10 10 10	3.6 4.0 3.2 3.6 3.6 3.6	40 4	0 1 8 8 2.2 1 5 4.4	28 28 26 30 27 24 6	15 19 18 17 17 19 5.8	61 64 56 60 64 70 15	0.1	.5 .4 .5 .5		a176 172 a170 a183 a182 177 43	.24 .23 .23 .25 .25 .24	1,600 1,330 1,300 1,210 1,220 1,400 1,130	38 44 36 40 40 40 23	16 21 15 16 18 20 18	69 67 70 67 69 71 29	2.8 2.7 2.8 2.8 2.8 3.1	288 345 275 303 307 328 76	6.9 7.0 6.9 7.6 7.0 6.4 6.7
Feb. 1-6	17,440 13,070 19,100 11,540	7.0 10 12 9.4 13 14		3.0 5.1 6.5 4.8 8.5 10 9.8	1.1 2.0 2.7 2.1 3.5 4.3 3.6	1 2 1 2 3	2 8 5 7 6 6	6 12 13 10 21 20 22	9.0 15 19 14 22 27 24	16 24 35 24 36 54 41	=======================================	.8 1.0 1.0 1.0 .5 .2		52 81 107 77 120 156 132	.07 .11 .15 .10 .16 .21	2,710 3,810 3,780 3,970 3,740 3,360 2,760	12 20 27 20 36 42 40	7 10 16 12 18 26 22	68 66 67 64 61 65 61	1.5 1.8 2.1 1.6 1.9 2.4 2.0	91 138 185 135 211 284 235	6.2 6.3 6.4 6.4 6.6 6.9
Apr. 1-7- Apr. 8-11, 13- Apr. 12. 14-20- Apr. 21-30 May 1-10 May 21-31 May 21-31	7,264 11,120 17,990 11,800	15 10 11 9.8 11 9.4		10 6.5 7.5 6.5 LL 8.5 9.5	3.4 2.0 3.0 2.2 3.6 3.0 3.5	2 1 2 1	2.5 5 6 5 3 9	28 14 18 14 30 20 26	22 12 19 15 19 14	40 23 36 22 34 31 43	.2	1.0 .4 1.5 .5 .8 .8		136 76 113 78 117 96 128	.18 .10 .15 .11 .16 .13	1,920 1,490 3,390 3,790 3,730 3,270 2,750	39 24 31 25 42 34 38	16 12 16 14 18 17 16	59 58 64 57 54 55 62	2.0 1.3 2.0 1.3 1.5 1.4 2.0	243 134 202 141 204 182 236	6.5 6.1 6.3 6.1 6.8 6.0 7.0
June 1-9	5,620 4,260 5,133 2,509 2,306 1,863 7,444 8,807	13 14 14 13 12 6.4		7.5 8.0 9.0 9.5 7.5 3.5 7.0	2.8 3.0 3.7 2.9 2.6 1.1 2.4	33331	2 - 6 1 4 1 3 6	22 28 28 38 36 32 12 26	12 14 14 13 9.2 6.2	33 60 36 42 46 43 17	 	1.2 .8 .5 .8 .8 .5		102 116 133 137 122 54 134	.14 .16 .18 .19 .17 .07	1,550 1,610 901 853 614 1,090 3,190	30 35 32 38 36 29 13 28	12 12 10 6 6 3 3	62 63 64 67 70 68 74	1.8 2.0 2.2 2.4 2.5 1.6 3.0	185 278 202 239 238 217 91 237	6.6 6.8 6.8 6.4 6.1 6.1 5.8 6.6
Aug. 4-10 Aug. 11-21 Aug. 22-31 Sept. 1-8, 10-15 Sept. 9, 16-24 Sept. 25-30		13 14 15 18 15		9.8 9.2 7.5 12 14	3.3 2.8 2.4 4.0 4.9 3.5	3 2 3 5 5	2 0 0 5 5	25 31 34 58 56 46	17 14 7.6 9.6 12 8.8	80 42 25 46 82 58		1.2 1.2 1.0 .8 .8		188 126 96 a166 212 163	.26 .17 .13 .23 .29	2,190 1,010 650 694 728 485	38 34 28 46 55 40	18 9 0 0 9 2	75 66 60 62 68 69	3.7 2.2 1.6 2.2 3.2 2.8	353 226 156 262 377 281	6.4 6.5 6.5 7.3 7.0 7.0
Weighted average	6,723	12		7.6	2.7	2	4	21	15	35		0.7		109	0.15	1,980	30	13	63	1.9	192	

a Residue on evaporation at 180°C.

SABINE RIVER BASIN -- Continued

MISCELLANEOUS ANALYSES OF STREAMS IN SABINE RIVER BASIN IN TEXAS

					Che	mical an	alyses,	Chemical analyses, in parts per million, water year October 1958 to September 1959	per mill	ion, wat	er year	October	1958 to	Septemb	sr 1959							
S.F.				S.	Mag-	å	Po-	Bicar-	Sul-	Chlo-	Fluo-	ż	Bo-	Ö	Dissolved solids (calculated)	ids ()	Hardness as CaCO,	iCO,	Per-	So- dium	Specific conduct-	
Date of collection	Dis- charge (cfs)	Silica (SiO ₁)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₁)	fate (SO,)	ride (C1)	ride (F)	(NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
						2	800	BIG COW CREEK AT FM ROAD 1416 NEAR BLEAKWOOD	REEK AT	FM ROAD	1416 NE	AR BLEAK	MOOD									
Mar. 19, 1959 al40	a140	12		3.0	6.0	3.9	0.7	12	1.4		6.8 0.0	0.0		35	0.05		11	-	41	0.5	7.7	6.8
								TROUT CR	EEK AT S	TROUT CREEK AT STATE HIGHWAY 87 NEAR CALL	HWAY 87	NEAR CA	11									
Mar. 19, 1959	a20	24		2.8	1.1	8.0	1.0	18	1.8	9.8	0.1	0.2		58	0.08		12	0	58	1.0	67	6.1
								30	O. CYPR	300. CYPRESS CREEK NEAR BUNA	X NEAR I	BUNA										
Mar. 19, 1959	0.4	8.4		1.5	1.2	7.2	0.5	10	1.8	9.8	0.2	0.2		36	0.05		6	0	63	1.1	36	6.0
a Field estimate.																						

NECHES RIVER BASIN

370. ANGELINA RIVER NEAR LUFKIN, TEX.

LOCATION.--At gaging station at bridge on U. S. Highway 59, 200 feet upstream from Procella Creek, 1½ miles downstream from Bayou Loco, 1.5 miles upstream from Southern Pacific Railroad bridge, and 8 miles north of Lufkin, Angelina County.

DRAINAGE AREA. -- 1,630 square miles.

RECORDS AVAILABLE. -- Chemical analyses: October 1954 to September 1959.

Water temperatures: October 1954 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 186 ppm Aug. 27-31; minimum, 63 ppm Apr. 13-14, 18-23.

Hardness: Maximum, 53 ppm Feb. 11-14; minimum, 22 ppm Apr. 13-14, 18-23.

Specific conductance: Maximum daily, 398 micromhos Dec. 13; minimum daily, 73 micromhos Apr. 19.

Water temperatures: Maximum, 87°F Sept. 21; minimum, 38°F Jan. 5, 10.

water temperatures: Maximum, A9 r Sept. 2; minimum, 36 r Jan. 5, 10.
EXTREMES, 1954-59. --Dissolved solids: Maximum, 412 ppm Nov. 4-18, 26-30, 1954; minimum, 36 ppm Oct. 16-18, 1957.
Hardness: Maximum, 76 ppm Nov. 4-18, 26-30, 1954; minimum, 11 ppm Oct. 16-18, 1957.
Specific conductance: Maximum daily, 895 micromhos Nov. 10, 1954; minimum daily, 38 micromhos Sept. 21, 1958.
Water temperatures: Maximum, 89°F July 9, 1957; minimum, 38°F Jan. 5, 10, 1959.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Во-		ssolved sol		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25°C)	ρΗ
Oct. 1-11, 1958 Oct. 12-20 Oct. 21-27 Oct. 28-31 Nov. 1-10 Nov. 19-30	3,430 723 404 478 300 301 452	15 18 20 18 20 19	0.11	6.5 - 8.8 7.2 9.5 8.0 7.0 8.5	2.9 4.4 3.3 4.5 3.9 3.4 4.0	1 2 1 3 2 1 2	2 9 9 0 7	18 24 26 26 28 27 24	12 19 17 18 17 15	21 34 24 62 27 22 45		1.0 1.0 1.0 .0 .8 .2		81 119 104 164 111 97 132	0.11 .16 .14 .22 .15 .13	750 232 113 212 89.9 78.8	28 40 32 42 36 31 38	13 20 10 21 13 9	51 55 57 67 55 54 63	1.1 1.5 1.5 2.6 1.4 1.3 2.1	138 200 160 282 185 161 237	7.0 7.0 7.1 7.5 7.4 7.3 7.0
Dec. 1-10	488 412 336 418 396 411	17 17 18 17 16 14	.12	8.0 9.0 7.2 8.2 8.8 8.5	4.1 4.5 3.6 4.0 4.7 4.3	2 3 2 3 2 3	7 2 0 9	23 22 24 22 24 21	23 25 21 22 26 26	33 54 28 44 40 48		.0 .2 .1 .2 1.2		120 a167 a120 a148 a142 145	.16 .23 .16 .20 .19	158 186 109 167 152 161	37 41 33 37 41 39	18 23 13 19 22 22	59 66 60 64 60 65	1.7 2.5 1.7 2.2 1.9 2.3	206 278 186 247 236 258	6.8 7.1 7.1 7.0 6.7 6.9
Feb. 1-10	779 944 1,962 2,441 1,482 827 563	15 15 14 14 16 14		8.0 10 4.8 6.0 8.0 9.0 8.5	4.7 6.8 3.4 3.8 4.5 5.0 5.3	2 3 1 1 2 3 2	7 1 4 7	16 15 15 16 18 20 24	30 41 16 18 27 32 27	35 56 15 21 38 43 34		.4 .2 .8 .8 .5 .8		a137 173 72 86 a143 a155 a137	.19 .24 .10 .12 .19 .21	288 441 381 567 572 346 208	39 53 26 31 38 43 43	26 41 14 18 24 27 23	58 61 49 51 60 61 55	1.7 2.2 1.0 1.1 1.9 2.1 1.6	220 318 115 141 222 254 217	6.8 7.1 6.9 6.9 5.9 6.9
Apr. 1-4, 10-12	2,897 10,580 5,006 782	14 13 14 15 14 10 10 15		9.0 11 4.5 7.8 9.0 9.0 5.5 9.0 6.8	4.9 6.0 2.7 3.5 4.5 5.0 3.3 4.4 3.6	20 4 8.0 1 2 4 2 1	1.9 4 3 1	28 24 18 20 26 12 21 36 30	26 27 12 18 20 18 18 15	27 68 10 20 34 72 24 24	0.2	.5 .4 1.0 .8 1.0 1.5 1.0		118 179 63 89 118 162 92 105 86	.16 .24 .09 .12 .16 .22 .13 .14	220 277 377 545 923 4,630 1,240 222 344	43 52 22 34 41 43 27 41 32	20 32 8 17 20 33 10 11	49 64 41 47 55 67 61 49 48	1.3 2.5 .7 1.0 1.6 2.7 1.7 1.2	204 339 98 150 212 314 150 178 134	6.9 6.8 5.7 7.1 6.7 6.4 6.5 5.7 5.8
June 9-14, 17-22, 29 June 15-16; 23-28, 30 July 1-10 July 11-20	611 432 - 365 181 538	18 17 19 20 17		8.8 9.5 9.0 8.5 7.8	4.5 4.7 4.8 4.7 3.9	1 3 2 2 2	7 5 3	36 33 32 42 30	15 17 21 15	24 56 34 28 24		1.2 .2 1.2 1.2		108 157 130 121 108	.15 .21 .18 .16	178 183 128 59.1 157	40 43 42 41 36	11 16 16 6	49 65 56 55 55	1.2 2.5 1.7 1.6 1.5	174 288 207 190 168	7.0 6.4 6.7 6.9 6.4
Aug. 1-10	770 165 138 152 176 79.1 65.0	19 21 20 16 20 19	:: :: ::	9.0 8.8 8.0 9.8 7.0 6.8 6.8	4.4 4.7 4.1 5.0 4.0 3.7 3.8	2 2	1 3	19 34 38 30 38 38 42	27 20 14 14 15 13	37 27 28 71 25 24 22		.5 1.0 1.0 .8 .8		132 120 117 a186 113 108 106	.18 .16 .16 .25 .15 .15	274 53.5 43.6 76.3 53.7 23.1 18.6	41 41 37 45 34 32 33	25 13 6 20 3 1	58 53 57 68 59 59 58	1.7 1.4 1.6 2.8 1.6 1.7	222 194 187 316 183 175 173	6.7 6.7 6.4 6.3 6.7 6.4 6.7
Weighted average	994	14		7.5	4.0	2	2	22	19	32		0.9		111	0.15	298	35	17	58	1.6	190	

a Residue on evaporation at 180°C.

NECHES RIVER BASIN--Continued

410. NECHES RIVER AT EVADALE, TEX.

LOCATION. -- At gaging station at bridge on U. S. Highway 96, 200 feet upstream from Gulf, Colorado and Santa Fe Railway bridge at Evadale, Jasper County, 600 feet downstream from Mill Creek, 15 miles LOCATION.--At gaging station at bridge on U. S. Highway 96, 200 feet upstream from Gulf, Colorado and Santa Fe Railway b upstream from Village Creek and at mile 55.

DRAINAGE AREA.--7,908 square miles.

RECORDS AVAILABLE.--Chemical analyses: October 1947 to September 1959.

Water temperatures: October 1947 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 156 ppm Mar. 6; minimum, 52 ppm Oct. 1-10.

Hardness: Maximum, 48 ppm Mar. 6; minimum, 18 ppm Oct. 1-10.

Specific conductance: Maximum daily, 295 micromhos Jan. 4; minimum daily, 61 micromhos Oct. 4.

Water temperatures: Maximum, 88°F July 1, 5-6, 11-13; minimum, 46°F Jan. 5-7, 11.

EXTREMES, 1947-59.--Dissolved solids: Maximum, 222 ppm Oct. 21-31, 1956; minimum, 35 ppm Sept. 21-22, 24, 1958.

Hardness: Maximum, 70 ppm Nov. 1-10, 1947; minimum, 14 ppm May 3-15, 1957, Oct. 27-31, 1957, Sept. 21-22, 24, 1958.

Specific conductance: Maximum daily, 422 micrombos Jan. 25, 1957; minimum daily, 44 micromhos Sept. 22, 1958.

Water temperatures: Minimum, 37°F Jan. 30-31, 1948, Jan. 31, 1949.

REMARKS.-Records of specific conductance of daily samples available in district office at Austin, Tex. Records of disc

REMARKS. -- Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper

					Che	mical a	nalyses,	in parts	per mill	ion, wate	r year	October	1958 to	Septembe	r 1959							
														Dis	solved sol	ids	Hard			So-	Specific	
	Mean	C'11	7	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	(c	alculated	1)	as Co	1CO2	Per-	dium	conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₂)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-10, 1958 Oct. 11-20 Oct. 21-31 Nov. 11-20 Nov. 21-30	17,780 7,197 1,615 1,597 1,438 2,788	10 13 14 18 18		4.8 7.0 8.5 9.8 10 9.5	1.5 2.4 2.8 2.9 2.8 2.7		2.8 12 17 20 22 25	16 22 28 29 33 34	9.2 12 15 17 16	8.8 16 22 27 28 30	0.0 .0 .0 .2 .1	0.5 .5 .2 .8 .8		52 74 94 110 114 120	0.07 .10 .13 .15 .16	2,500 1,440 410 474 443 903	18 28 32 36 36 36	5 10 10 12 10 6	40 49 53 55 57 61	0.7 1.0 1.3 1.5 1.6	76 123 159 181 191 195	7.1 7.1 7.0
Dec. 1-10	1,914 1,227 1,972 1,529 1,945 1,608 5,077	16 18 16 20 19 18 8.4		8.8 8.8 8.5 9.0 9.0 9.0	3.5 3.6 3.6 3.8 3.7 3.7	25	24 25 25 26 28 29	36 40 34 32 32 32 32	18 17 18 20 21 22	28 28 30 35 35 36 14	.2 .1 .1 .2 .2 .2	.8 .5 .8 .0 .4		117 121 119 132 a140 a139 63	.16 .16 .16 .18 .19 .19	605 401 634 545 735 603 864	36 37 36 38 38 38	7 4 8 12 12 12 12	59 59 60 57 62 63 54	1.7 1.8 1.8 1.8 2.0 2.1	196 201 201 221 218 222 111	7.1 7.0 7.6 6.8 7.1
Feb. 6-20	7,185 9,835 7,724 5,660 5,298 3,743	12 11 12 14 13 14		7.1 5.6 7 2 13 8.8	2.8 2.5 2.6 3.8 3.2 3.9		19 15 19 33 21 24	19 14 13 16 15 21	21 18 26 32 26 30	22 18 22 50 29 32	.2 .2 .0 .1 .0	.8 .8 2.0 .5		94 78 96 156 108 124	.13 .11 .13 .21 .15	1,820 2 070 2,000 2,380 1,540 1,250	29 24 28 48 35 41	14 13 18 35 22 24	58 57 59 60 57 56	1.5 1.3 1.5 2.0 1.6 1.6	159 134 162 273 192 218	6.6 6.5 7.1 6.4
Apr. L-11	3,341 12,790 24,500 10,880 8,604 12,030	14 11 9.4 11 12 9.4		10 8.5 5.0 8.0 10 7.5	4.2 2.8 1.8 2.9 3.8 3.0		2.8 2.6 13 22 17	26 20 16 18 22 22	28 21 13 18 23 12	32 22 10 18 32 26	.2 .2 .2 .2 .2	.5 1.0 .5 1.0 1.0		128 94 59 81 115 87	.17 .13 .08 .11 .16	1,150 3,250 3,900 2,380 2,670 2,830	42 32 20 32 40 31	21 16 7 17 22 13	52 54 44 47 54 55	1.5 1.4 .8 1.0 1.5	221 164 92 144 206 162	7.1 6.6 6.2 6.0
June 1-10	6,216 7,007 2,908 1,950 1,492 7,977	14 14 14 17 18 12		9.0 8.0 9.0 10 10 7.8	3.2 3.4 3.7 3.6 3.7 2.4		14 12 14 26 25 17	30 30 36 42 44 26	11 11 11 13 13 14	20 16 18 33 30 21	.1 .1 .3 .3	1.0 1.0 1.0 1.0		87 80 89 125 123 88	.12 .11 .12 .17 .17	1,460 1,510 699 658 495 1,900	36 34 38 40 40 30	11 10 8 6 4 8	46 43 45 59 57 56	1.0 .9 1.0 1.8 1.7	155 137 147 205 199 147	6.3 6.4 7.3 6.7
Aug. 1-10	4,842 2,345 1,545 1,451 1,077 535	. 13 15 17 16 20 20		6.0 7.0 7.8 9.5 9.5	1.9 2.5 3.2 3.7 3.7 4.2		13 14 18 27 23 22	22 25 30 32 36 44	14 18 17 18 17	13 14 20 37 28 27	.2 .2 .2 .2 .2 .2	.8 .8 .8 .8		73 84 99 128 120 121	.10 .11 .13 .17 .16	954 532 413 501 349 175	23 28 32 38 38 42	5 8 8 12 9 6	56 53 54 61 56 53	1.2 1.4 1.9 1.6 1.5	116 128 159 224 195 197	6.0 6.2 6.3 6.5
Weighted average	5,162	12		7.5	2.8		17	22	17	21	0.1	0.8		89	0.12	1,240	30	12	55	1.3	151	

a Residue on evaporation at 180°C.

NECHES RIVER BASIN -- Continued

MISCELLANEOUS ANALYSES OF STREAMS IN NECHES RIVER BASIN IN TEXAS

discharge (SiO ₂) (Pe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Fe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Fe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Fe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Na) diwn from from from from from from from from	discrete (SiO ₂) (Fe) (Ca) (Mg) (Na) (K) (HCO ₂) (SO ₃) (C1) (Fe) (RO ₃) (SO ₄) (Fe) (RO ₄) (RO ₄		Mean		 Cal-	Mag-	Š	Po-	Bicar-	Sult	Chlo	Fluo	ż	Bo-		Dissolved solids (calculated)	olids ed)	Ha	Hardness as CaCO,	Per-	So-	Specific conduct-	
13 9.2 1.5 5.3 0.6 29 3.0 9.5 0.0 0.0 56 0.08 29 5 28 0.4 88 1.890 1.5 1.5 1.2 1.4 2.8 54 0.1 0.0 0.0 1.8 0.16 1.5	277 15 6.2 2.1 3 0.6 129 3.0 9.5 0.0 0.0 0.0 56 0.09 29 5 28 0.4 88 1.890 8.5 1.3 10.6 29 3.0 9.5 1.3 10.6 1.890 8.5 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Date of collection	dis- charge (cfs)	Silica (SiO ₂)	 cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fare (SO ₂)	ride (Ci)	ride (F)	1631	3 84	Parts per mil- lion		Tons per day	Cal- cium, magne- sium		1 -	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
13 9.2 1.5 5.3 0.6 29 3.0 9.5 0.0 0.0 56 0.08 29 5 28 0.4 88 415 VILLAGE CREEK NEAR KOUNTZE	15 15 15 16 29 3.0 9.5 0.0 0.0 56 0.08 29 5 28 0.4 88 297 21 21 21 21 21 21 21 2								CYPRESS C	REEK AT	US HIGHWA	N 190 N	EAR WOOL	WILLE									
277 15 6.2 2.1 8.7 1.2 10 3.6 16 7.1 0.0 118 0.16 24 13 73 2.7 214 2.8 54 0.1 0.0 49 0.07 15 15 15 2.7 2.7 2.14 2.8 54 0.1 0.0 15 2.0 1.0 0.0 15 2.0 1.0 0.0 15 2.0 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.	277 15 6.2 2.1 31 14 2.8 54 0.1 0.0 18 0.16 24 13 73 2.7 214 2.1 8.9 9.0 9.0 9.0 8.7 1.2 10 3.8 16 1.1 5.5 49 0.1 6.0 15 15 7 53 1.0 8.3	ir. 19, 1959		13	9.2	1.5	5.3		Ц	3.0		Н	\Box		56			29	5	28	5.0	888	6.8
1,890 9.0 6.2 2.1 1.2 1.0 1.0 3.6 1.6 1.1 0.0 1.18 0.16 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1,890 9.0 6.2 2.1 8.7 1.2 10 3.6 16 0.1 0.0 118 0.16 15 15 17 3.1 2.7 214 1.0 5 18 0.16 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0								. 41	5. VILL	AGE CREEK	K NEAR KI	OUNTZE										
CYPRESS CREEK AT STATE HIGHMAY 326 NEAR KOUNTZE 7.8	CYPRESS CREEK AT STATE HIGHWAY 326 NEAR KOUNTZE 16 4.4 106 14 0.0 196. 0.2 1.0 338 0.46 58 46 80 6.1 580	ar. 19, 1959	1,890	15	3.2		8.7		14	3.6		0.1			118	0		24	13	73	1.0	214	5.9
7.8 16 4.4 106 14 0.0 196 0.0 196 0.1 1.0 1 338 0.46 36 46 80 6.1 680	7.8 16 4.4 106 14 0.0 196 0.2 1.0 338 0.46 56 46 80 6.1 680							υ	YPRESS CR	EEK AT S	TATE HIGH	WAY 326	NEAR KO	MINTZE									
	Field estimate.	ir. 18, 1959		7.8	16	4.4		106	14	0.0	_	0.5	Н	Ц	338	H		58	95	80	6.1	680	6.2

TRINITY RIVER BASIN

625. TRINITY RIVER NEAR ROSSER, TEX.

LOCATION.--At gaging station at bridge on State Highway 34, 2.5 miles south of Rosser, Kaufman County, and 8.5 miles downstream from East Fork Trinity River.

DRAINAGE AREA.--8,162 square miles.

RECORDS AVAILABLE.--Chemical analyses: October 1954 to September 1959.

Nater temperatures: October 1954 to September 1959.

EXTREMES, 1958-59,--Dissolved solids: Maximum, 745 ppm Dec. 21-31; minimum, 174 ppm Apr. 19.

Hardness: Maximum, 197 ppm Feb. 26-28, Mar. 1-5; minimum, 104 ppm Apr. 19.

Specific conductance: Maximum daily, 1,280 micromhos Dec. 30; minimum daily, 266 micromhos May 3.

Mater temperatures: Maximum, 87°F July 9, 11; minimum, 34°F Dec. 23, Jan. 3.

EXTREMES, 1954-59,--Dissolved solids: Maximum, 1,800 ppm Aug. 21-31, 1956; minimum, 139 ppm Nov. -6, 1957.

Hardness: Maximum, 310 ppm Oct. 11-20, 1956; minimum, 88 ppm Nov. 5-6, 1957.

Hardness: Maximum, 310 ppm Oct. 11-20, 1956; minimum, 88 ppm Nov. 5-6, 1957.

Water temperatures: Maximum, 97°F July 1, 1955; minimum, 34°F Jan. 20, 1956, Dec. 23, 1958, Jan. 3, 1959.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		solved sol		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent . so- dium	adsorp- tion ratio	(micro- mhos at 25°C)	pH
Oct. 1-9, 11 1958 Oct. 10, 12-20 Oct. 21-31 Nov. 1-10 Nov. 11-20 Nov. 21-30	920 720 704 282 347 361	10 13 11 14 14 15		52 54 56 63 59 63	3.9 4.8 4.8 5.5 5.5	8	0	166 184 188 195 187 204	60 88 105 140 149 147	36 54 49 85 91 87		12 23 24 43 47 42		320 426 432 585 a598 a596	0.44 .58 .59 .80 .81	795 828 821 445 560 581	146 154 159 180 170 180	10 3 5 20 16 12	44 54 55 61 64 62	1.9 2.9 3.1 4.2 4.7 4.4	512 676 691 926 960 958	7.9 7.6 7.5 7.8 7.6 7.1
Dec. 1-10	432 294 284 360 312 299	11 13 14 14 14 14		66 68 66 66 62 62	5.5 5.9 6.6 6.0 5.5 6.1	10 14 19 130 13	8 0 14	191 238 288 180 202 235	114 144 178 167 167	73 93 105 90 98 104	0.9	39 49 43 53 55		537 a638 a745 667 695 a726	.73 .87 1.01 .91 .95	626 506 571 648 585 586	187 194 192 189 177 180	30 0 0 42 12 0	54 62 68 58 66 69	3.3 4.6 6.0 4.1 5.2 5.9	849 1,050 1,180 1,050 1,100 1,160	7.0 7.0 7.2 7.0 6.8 7.0
Feb. 1-13	327 5,260 1,192 493 1,513 537 433	14 12 8.8 13 8.8 11		64 47 66 70 54 62 64	6.0 2.6 4.4 5.5 3.8 5.4 5.1	10	13 i6	188 5136 175 190 140 172 186	161 36 93 130 64 90 116	108 14 36 73 32 52 70		53 11 15 33 14 20 26		670 a213 375 559 312 412 516	.91 .29 .51 .76 .42 .56	592 3,030 1,210 744 1,270 597 603	184 128 182 197 150 176 180	30 16 3 9 42 36 36 36 28	64 28 40 53 37 46 54	4.9 .9 1.8 3.2 1.4 2.2 3.2	1,060 351 607 873 487 659 824	7.4 8.5 7.7 8.0 7.4 7.4 6.9
Apr. 1-10	382 433 6,510 1,278 460 4,682 779 452	13 12 10 8.2 13 10 11		64 63 40 63 56 43 60 60	5.6 5.7 1.1 4.9 5.6 3.5 5.0 6.0	10	.8 52 04 25	189 187 110 168 185 120 167 187	138 122 34 95 108 50 99 128	77 76 8.0 43 74 14 48 79	.8	39 30 9.1 18 26 7.9 15 20		576 544 a174 412 508 a212 412 542	.78 .74 .24 .56 .69 .29 .56	594 636 3,060 1,420 631 2,680 867 661	182 180 104 177 162 122 170 174	28 28 14 40 11 23 33 21	55 56 28 43 58 31 47 58	3.5 3.4 .8 2.0 3.6 1.0 2.3 3.6	880 833 287 635 804 367 657 871	7.8 7.5 8.0 7.6 7.7 7.9 7.7
June 1-5	870 2,083 449 2,881 386 332 995	16 13 15 11 12 20 12		62 49 60 53 55 57 50	6.2 3.8 5.2 4.2 5.5 6.5 3.8	11 4 8	3 .4 .9 32	149 145 188 146 168 200 156	166 67 122 82 90 137 58	100 37 82 31 64 105 37		29 15 27 9.4 21 23 9.0		a581 a309 a517 341 440 624 306	.79 .42 .70 .46 .60 .85	1,360 1,740 627 2,650 459 559 822	180 138 171 150 160 168 140	58 19 17 30 22 4	61 45 59 42 53 64 43	4.2 1.9 3.8 1.7 2.8 4.7 1.8	988 508 847 516 688 980 499	7.5 7.8 7.4 7.3 7.2 7.0 6.7
Aug. 1-2, 13	466 472 361 250 294 192 262	14 12 12 16 19 18		51 52 49 49 48 42 35	3.8 4.3 4.6 5.3 5.1 6.0 5.8		57 51 58	167 168 167 187 181 189 202	78 91 107 150 162 126 136	50 55 70 109 104 108 125		12 15 21 28 34 44 43		a363 402 457 613 660 621 695	.49 .55 .62 .83 .90 .84	457 512 445 414 524 322 492	142 147 142 144 141 130 112	6 10 4 0 0 0	52 54 61 70 71 73 78	2.6 2.9 3.7 5.7 5.9 6.0 7.7	597 638 734 1,010 1,030 986 1,120	7.4 7.3 6.9 6.6 7.5 7.2 6.8
Weighted Average	664	12		56	4.6	8	30	168	97	54		22		425	0.58	762	158	21	52	2.8	678	

a Calculated from determined constituents.

b Includes equivalent of 5 parts per million of carbonate (CO3).

TRINITY RIVER BASIN--Continued

646. RICHLAND CREEK NEAR FAIRFIELD, TEX.

LOCATION. -- At bridge on State Farm Highway 488, 4 miles upstream from mouth, 4 miles downstream from Chambers Creek and 16 miles north of Fairfield, Freestone County. RECORDS AVAILABLE . -- Chemical analyses: April 1956 to September 1959.

Water temperatures: April 1956 to September 1959.

Water temperatures: April 1956 to September 1959.

EXTREMES, 1958-59, --Dissolved solids: Maximum, 4,260 ppm Feb. 4; minimum, 140 ppm June 24-27.

Hardness: Maximum, 300 ppm Feb. 4; minimum, 94 ppm June 24-27.

Specific conductance: Maximum daily, 10,100 micromhos Sept. 25; minimum daily, 217 micromhos June 25.

Water temperatures: Maximum, 91 °F Aug. 3, 6; minimum, freezing point Jan. 3-4.

EXTREMES, 1956-59, --Dissolved solids: Maximum, 13,500 ppm Aug. 11-31, 1956; minimum, 131 ppm Apr. 21-30, 1957.

Hardness: Maximum, 460 ppm Oct. 18, 1956; minimum, 79 ppm Nov. 5-8, 1956.

Specific conductance: Maximum daily, 22,000 micromhos Aug. 22, 1956; minimum daily, 157 micromhos Apr. 25, 1957.

Water temperatures: Maximum, 98°F Aug. 3, 1957; minimum, freezing point Jan. 3-4, 1959.

REMARKS,--Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined contributes unless otherwise noted as paced for dissolved solids concentrations of daily samples available in district office at Austin. Tex. No discharge records available for this constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available for this

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia	solved sol	ids	Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO.)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25' C)	pН
Oct. 1-4, 11, 1958 Oct. 5-10 Oct. 12-22 Oct. 23-27 Oct. 28-31 Nov. 1-4, 8-9, 18-20 Nov. 5-7 Nov. 10-17 Nov. 21-25		13 12 10 10 12 9.6 8.4 5.8	0.01 .02 .02 .09 .03 .01 .03 .02	76 68 77 52 76 92 76 93 89	5.2 4.4 6.3 3.3 5.0 6.7 5.9 10 7.6	21 11 38 5 19 27 8 69 47	4 3 5 0 5 5 9	225 175 246 131 208 250 192 310 250	48 56 50 59 57 84 91 61 85	315 162 560 63 275 395 101 1,040 700	0.4	8.0 5.5 7.5 3.8 5.0 6.5 5.1 9.0 4.2		804 524 1,220 322 749 a1,000 482 2,070 1,500	1.09 .71 1.66 .44 1.02 1.36 .66 2.82 2.04		211 188 218 143 210 257 214 273 254	26 44 16 36 40 52 56 19 48	69 57 79 45 66 70 46 85 80	6.6 3.6 11 2.0 5.7 7.5 2.5 18	1,440 924 2,220 540 1,330 1,800 798 3,730 2,650	8.2 8.2 8.0 7.9 7.9 8.0 8.0 8.2
Dec. 7		13 6.4 6.2 5.2 4.6 3.8 6.4	.03 .01 .01 .01 .01	75 95 97 100 88 95 85	4.2 7.5 7.6 7.7 6.0 9.1 8.4	10 52 53 389 21 55 14	0 1 5.1 5	180 297 296 277 248 292 189	85 72 73 98 82 89 121	140 760 780 580 295 810 195	.5 .6 .6 .4	6.5 9.0 9.6 6.9 6.1 8.0 6.0		b521 1,620 1,650 1,330 856 1,710 674	.71 2.20 2.24 1.81 1.16 2.33 .92		204 268 274 281 244 274 246	57 24 31 54 41 36 92	54 81 81 75 66 81 56	3.3 14 14 10 6.0 15 4.0	929 2,900 2,980 2,360 1,490 3,100 1,170	8.2 8.2 8.2 8.2 8.2 8.2 7.9
Feb. 1-3		8.8 5.6 12 12 9.6 12 10 7.0 9.0 3.8	.00	90 78 88 54 96 96 86 92 89 42 82	6.4 8.1 4.0 6.5 6.6 9.9 6.7 7.0 3.2 7.6	72 14 33 3 11 17 59 14 25 5	7 2 6 4 4 4 5 5 2 2	c 298 d 384 210 252 140 244 251 e 276 f 216 g 242 110 h 229	88 89 108 58 79 78 68 98 75 46	1,060 2,350 190 460 32 158 248 880 198 365 67 502	.5 .5 .5 .7 .6 .7 .3 .2 .3	7.0 7.3 6.0 8.5 8.8 9.2 8.5 7.7 8.2 3.5 6.0		2,130 4,260 654 1,130 288 626 772 1,800 b661 b922 b279 1,130	2.90 5.79 .89 1.54 .39 .85 1.05 2.45 .90 1.25 .38 1.54		266 300 221 253 151 266 266 255 257 251 118 236	21 0 49 46 36 66 61 28 80 52 28 48	86 59 74 34 48 59 84 55 69 50 76	19 4.3 9.0 1.3 3.0 4.7 16 3.9 6.9 2.2 9.7	3,830 7,480 1,110 2,030 455 1,040 1,330 3,240 1,190 1,710 499 2,120	8.5 8.6 8.0 7.7 8.2 8.1 8.6 8.6 8.7 8.2 8.5
Apr. 1-2		10 9.6 10 11 13 11	.01 .01 .03 	49 72 58 48 61 88 62	3.0 5.5 4.0 3.4 3.6 6.2 4.5	3 3 12	9 0 4	276 133 185 147 129 159 238 170	54 91 58 47 57 75	772 83 262 88 28 33 165 102	.6 .6 .5 .5 .4	4.9 3.0 5.0 5.7 3.8 6.3 4.8		5341 769 392 254 296 618 416	.46 1.05 .53 .35 .40 .84		252 135 202 161 134 167 245	26 26 50 40 28 37 50 34	51 67 48 33 31 52 49	2.5 5.9 2.4 1.1 1.1 3.4 2.6	2,930 611 1,320 650 400 477 1,070	7.9 7.6 8.0 7.7 7.5 8.0 7.7 7.8
May 4, 10-11, 12 at 6:48 am, 13-15 May 8		10	.07	39 70	2.3	-	7	112 206 209 183	27 60	14 230 458 51	.4	3.0 5.2		181 356	.25 .48		107 214 232 194	15 45 60 44	25 33	.7 1.4	285 1,260 2,000 570	7.4 7.9 7.9 7.7

a Residue on evaporation at $180\,^{\circ}\text{C}$.

b Calculated from determined constituents.

o Casturateu from determined constituents.

Includes equivalent of 12 parts per million of carbonate (CO₃).

d Includes equivalent of 27 parts per million of carbonate (CO₃).

Includes equivalent of 13 parts per million of carbonate (CO₃).

f Includes equivalent of 10 parts per million of carbonate (CO₃).

Includes equivalent of 14 parts per million of carbonate (CO₃).

h Includes equivalent of 8 parts per million of carbonate (CO₃).

TRINITY RIVER BASIN--Continued

646. RICHLAND CREEK NEAR FAIRFIELD, TEX. -- Continued

Chemical analyses, in parts per million, water year October 1958 to September 1959--Continued

	Mean	g		Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids	Hard as C	iness cCO ₁	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25 C)	ρН
June 1, 3-4, 14-20, 1959		14	0.01	86	6.1	11	4	222	76	155	0.5	6.6		598	0.81		240	58	51	3.2	1,000	7.9
June 5. 11-13		14	.02	64	3.9	4		170	59	52	.5	4.8		346	.47		176	36	37	1.6	558	7.5
June 6-10		1.3	.03	45	2.6	1	9	129	35	13	.5	3.0		208	.28		123	1.7	2.5	. 7	325	7.3
June 21						-	-	179		235							204	58			1,260	7.B
June 22-23, 28-30		14	.03	48	3.0	3	0	133	42	30	.5	2.5		250	.34		1.32	23	33	1.2	401	7.6
June 24-27		11	.09	34	2.1	1	2	102	21	8.0	.5	1.5		b140	.19		94	10	22	. 5	239	7.5
July 1-4		12	.04	66	5.1	5	2	164	49	77	.4	3.2		376	.51		186	51	38	1.6	633	6.5
July 5, 7-9, 11-15		14	.02	80	7.3	16	8	201	76	245	.5	5.0		751	1.02		230	65	61	4.8	1,300	7.0
July 16-20		9.8		74	8.2	28	8	196	78	425	.4	4.2		b984	1.34		218	58	74	8.5	1,790	7.3
July 21		15		39	2.2	5		136	49	47	.7	4.5		b283	.38		106	0	55	2.5	459	8.0
July 22-31, Aug. 1-2		13		64	4.4	12	8	156	83	168	.6	3.0		550	.75		178	50	61	4.2	935	7.5
Aug. 3-6		13		65	6.1	26		184	72	372	.6	1.8		894	1.22		187	36	75	8.3	1,600	8.0
Aug. 7, 9-15		1.0		70	7.9	53		196	74	800	.7	.5		1,590	2.16		207	46	85	16	2,880	7.8
Aug. 16-28, 30-31		8.0		86	10	81		274	70	1,220	.7	.5		2,340	3.18		256	31	87	22	4,180	7.9
Sept. 1-5, 17-23, 25-26-		7.8	.02	88	16	1,36		323	77	2,050	.8			3,760	5.11		286	21	91	35	6,600	7.7
Sept. 7-16, 28-29		7.8	.00	72	11	77	7	271	78	1,140	.6	1.5		2,220	3.05		224	2	88	23	3,970	8.1
Sept. 30						-	-	159		465							122	0			1,790	8.0

b Calculated from determined constituents.

+

TRINITY RIVER BASIN -- Continued

665. TRINITY RIVER AT ROMAYOR, TEX.

LOCATION. -- At gaging station at bridge on State Highway 105, 1.9 miles south of Romayor, Liberty County, 2.0 miles downstream from Gulf, Colorado and Santa Fe Railway bridge and at mile 94. DRAINAGE AREA .-- 17,192 square miles .

RECORDS AVAILABLE .- - Chemical analyses: October 1945 to November 1949, February 1950 to September 1951, April 1953 to September 1959.

Water temperatures: February 1950 to September 1951, April 1953 to January 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 666 ppm Sept. 7-8, 10-16; minimum, 132 ppm Apr. 12-22.
Hardness: Maximum, 187 ppm Sept. 7-8, 10-16; minimum, 66 ppm Apr. 12-22.

Hardness: Maximum, 187 ppm Sept. 7-8, 10-10; minimum, 06 ppm mpc. 12-22.

Specific conductance: Maximum daily, 1,520 micromhos Sept. 15; minimum daily, 194 micromhos Apr. 13.

EXTREMES, 1945-50, 1953-59, --Dissolved solids: Maximum, 1,900 ppm Nov. 7, 1953; minimum, 82 ppm July 31, 1954.

Hardness: Maximum, 258 ppm Oct. 21-31, 1956; minimum, 32 ppm Nov. 1-3, 1955.

Specific conductance: Maximum daily, 3,800 micromhos Oct. 30, 1956; minimum daily, 103 micromhos Nov. 9, 1946.

Water temperatures (1953-58): Maximum, 98°F July 18, 27, 1953; minimum, 38°F Jan. 18, 1956.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

					Ch	emical a	nalyses,	in parts	per mill	ion, wate	r year	October	1958 to	o Septembe	r 1959							
															solved soli	ds	Har	iness	T		Specific	
	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	N 00000	due at 18		as C	aCO ₃	Per-	So-	conduct-	
Date of collection	dis- charge	Silica (SiO ₁)	Iron	cium	ne- sium	dium	tas-	bonate	fate	ride	ride	trate	ron	Parts	Tons		Cal-		cent	dium adsorp-	ance	pH
	(cfs)	(3101)	(Fe)	(Ca)	(Mg)	(Na)	sium (K)	(HCO ₃)	(50,)	(CI)	(F)	(NO ₃)	(B)	per mil- lion	per acre- foot	Tons per day	cium, magne- sium	Non- carbon- ate	dium	tion ratio	mhos at 25° C)	
Oct. 1-10, 1958	4,813	1.5		44	4.0		37	124	40	43		3.5		264	0.36	3,430	126	25	39	1.4	434	8.0
Oct. 11-20	1,691	16		56	5.2		73	154	50	98		5.5		397	.54	1,810	161	35	50	2.5	681	7.9
Oct . 21-31		14		59	5.3		84	165	62	104		7.5		434	. 59	1,660	169	34	52	2.8	742	7.8
Nov. 1-10	961	14		53	5.0		75	148	50	97		7.0		392	. 53	1,020	152	31	52	2.6	675	7.7
Nov. 11-20	754	15		58	5.5		75	156	58	98		3.5		407 506	.55	829	167	39	49	2.5	691	7.8
Nov. 21-30	1,072	11		55	6.3		116	145	63	161		3.5		306	.69	1,460	163	44	61	3.9	891	7 8
Dec. 1-14	1,321	16		51	6.9		135	143	73	178		7.2		555	.75	1,980	156	38	65	4.7	964	7.5
Dec. 15-31	860	16		55	6.8		115	146	73	151		8.5		506	.69	1,170	165	46	60	3.9	883	7.8
Jan. 1-15, 1959	1,073	16		53	7.3	125	6.3	140	75	177	0.3	8.5		555	.75	1,610	162	48	62	4.3	958	7.5
Jan. 16-31	824	13		56	8.0		144	150	89	185		10		595	.81	1,320	172	50	64	4.8	1,040	7.8
Feb. 1-6	2,469	15		36	3.4		65	89	41	88		6.2		a299	.41	1,990	104	31	57	2.8	534	8.0
Feb. 7-15, 19-20	4,450	17		46	6.6		115	115	70	155		8.2		511	.69	6,140	142	48	64	4.2	851	7.9
Feb. 16-18	17,300	12	1	24	2.3		34	60	31	41		4.1		a178	.24	8,310	70	20	51	1.8	313	7.7
Feb. 21-28	9,192	14		39	3.9	1	35	110	44	35		5.3		a230	.31	5,710	114	24	40	1.4	395	7.8
Mar. 1-8	2,382	16		46	5.5		58	122	56	72		4.8		344	.47	2,210	138	38	48	2.2	555	7.7
Mar. 9-20	3,354	14		49	6.5		91	129	70	114		8.4		438	.60	3,970	149	44	57	3.2	735	7.7
Mar. 21-31	1,673	13		51	5.7		62	137	58	77		5.5		366	.50	1,650	150	38	47	2.2	593	7.8
Apr. 1-9	1,814	16		59	8.0	101	5.1	147	73	140	.4	4.8		516	.70	2,530	180	60	54	3.3	856	7.8
Apr. 10-11	10,530	20		29	4.1		43	82	37	53		3.8		a230	.31	6,540	90	22	51	2.0	393	7.8
Apr. 12-22	23,990	12		22	2.8		19	64	20	23		2.0		a132	.18	8,550	66	14	38	1.0	235	7.3
Apr. 23-30	13,800	14	1	38	3.8		26	110	35	27		3.7		a202	.27	7,530	110	20	34	1.1	355	7.6
May 1-7, 13-15	7,442	14		48	5.1		49	128	48	64		2.5		a294	.40	5,910	141	36	43	1.8	521	7.6
May 8-12, 16-20	16,980	9.8		32	3.0		18	96	20	22		2.5		a154	.21	7,060	92	14	30	.8	284	7.5
May 21-31	21,250	11		34	3.4		19	94	27	24		1.5		a166	.23	9,520	99	22	29	.8	296	7.4
June 1-10	5,083	22		43	5.1		44	118	46	54		3.5		286	. 39	3,930	128	32	43	1.7	461	7.2
June 11-17, 29-30	10,700	16		42	3.8		26	125	35	25		4.5		230	.31	6,640	120	18	32	1.0	359	7.2
June 18-28	3,505	21		48	5.0		52	143	41	65	1	2.8	f	308	.42	2,910	140	24	45	1.9	512	7.4
July 1-9		22	1	42	3.8	1	26	128	35	24		1.5		226	.31	8,340	120	16	32	1.0	350	7.8
July 10-25	1,502	19		58	5.8		66	166	46	88		3.5		372	.51	1,510	168	32	46	2.2	626	6.8
July 26-31	9,658	13		28	3.0		52	83	35	63		3.0		a238	.32	6,210	82	14	58	2.5	414	7.3
Aug. 1-5, 9-16	2,202	17		40	4.2		56	116	40	71	1	2.2		308	.42	1,830	118	22	51	2.2	501	7.3
Aug. 6-8, 17-20, 22		. 17		50	5.6		71	140	45	99;	1	2.2		382	. 52	1,460	148	34	51	2.5	639	7.5
Aug. 21, 23-25	948	20	1	57	6.0		112	171	46	157-7-		.8	1	a483	.66	1,240	166	26	59	3.8	832	7.9
Aug. 26-31		13	1	43	4.5		73	133	53	86 **	1	.2		357	.49	1,490	126	17	56	2.8	579	7.8
Sept. 1-6, 9	939	19		51	6.2		93	162	57	114	1	1.8		435	.59	1,100	152	20	57	3.3	741	7.6
Sept. 7-8, 10-16	752	11		62	7.9		171	187	75	232	3	1.8		666	.91	1,350	187	34	67_	5.4	1,180	7.6
Sept. 17-30	516	13		60	7.4		157	205	63	203		1.5		614	.84	855	180	12	65	5.1	1,100	7.6
Weighted average	4,909	14	1	38	4.1		42	107	37	54		3.4		249	0.34	3,300	112	24	45	1.7	425	

a Calculated from determined constituents.

TRINITY RIVER BASIN -- Continued

671. TRINITY RIVER NEAR MOSS BLUFF, TEX.

LOCATION . -- At Devers Pumping Plant Number One, one mile west of Moss Bluff, Liberty County.

RECORDS AVAILABLE .-- Chemical analyses: Short periods during summers of 1946 to 1949, daily records October 1949 to September 1959.

EXTREMES, 1958-59. -- Dissolved solids: Maximum, 693 ppm Dec. 5-8; minimum, 143 ppm Apr. 12-20.

Hardness: Maximum, 194 ppm Sept. 17-24, 27-30; minimum, 69 ppm Apr. 12-20.

Specific conductance: Maximum daily, 1,270 micromhos Dec. 6; minimum daily, 235 micromhos Apr. 18.

EXTREMES, 1949-59.-Dissolved solids: Maximum, 3,930 ppm Aug. 26-31, 1956; minimum, 110 ppm Oct. 4-10, 1949.

Hardness: Maximum, 790 ppm Aug. 26-31, 1956; minimum, 40 ppm Apr. 9-13, 1955.

Specific conductance: Maximum daily, 7,630 micromhos Aug. 27, 1952; minimum daily, 127 micromhos Oct. 7, 1949.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tax. No discharge records available for this station.

Chemical analyses, in parts per million, water year October 1958 to September 1959 Hardness Dissolved solids Specific as CaCO, Mean Mag-Cal-So-Bicar-Chlo-(residue at 180°C) Perconduct-Fluo-Ni-Bodium dis-Silica Iron tascent ance Date of collection cium pH dium Caladsorpbonate fate ride ride trate ron Parts Tons charge (SiO,) (Fe) sium Tons Non-(micro-(Ca) (Na) (HCO₃) (SO,) (CI) (F) (NO₃) (B) tion cium, (cfs) (Mg) (K) carbon. dium mhos at milacremagneratio day ate 25° C) lion foot sium Oct. 1-8, 27-28, 1958---114 218 0.30 108 356 Oct. 9-16-----12 48 46 4.2 139 35 60 3.0 292 .40 137 23 490 Oct. 17-26, 29-31----5.3 79 169 48 104 4.0 408 .55 166 28 2.7 699 7.9 Nov. 1-15-----83 48 5.1 164 111 5.5 420 .57 166 31 725 Nov. 16-30-----12 89 164 55 121 2.5 433 .59 172 37 53 2.9 769 7.6 17 Dec. 2-4, 9-15----73 155 8.0 74 161 Dec. 5-8-----17 173 172 62 252 693 94 185 5.5 1,210 7.0 Dec. 19-31-----16 59 67 110 514 .70 176 44 3.6 890 Jan. 1-14, 1959-----14 60 9.0 133 75 0.5 159 4.0 611 .83 56 186 4.2 1,030 7.8 Jan. 15-28-----12 60 7.9 149 164 75 204 6.6 .88 182 48 64 4.8 1,090 7.6 Jan. 29-31, Feb. 1----12 45 5.0 88 111 47 127 403 5.6 .55 42 59 133 3.3 8.1 Feb. 2-8-----9.4 27 27 2.6 60 a208 .28 20 2.2 384 7 6 Feb. 9-12. 16-----43 12 4.7 76 104 54 105 5.2 374 .51 127 2.9 632 7.4 Feb. 13-15, 17-28----42 12 3.2 35 115 35 4.8 a233 .32 118 24 1.4 402 7.6 Mar. 1-8-----43 4.9 49 41 16 116 66 4.0 304 .41 127 32 1.9 486 7.9 Mar. 10-14, 20-24----16 52 6.8 85 130 70 112 6.9 435 .59 158 51 3.0 728 Mar. 15-19, 26-31-----50 50 42 4.9 141 65 4.8 313 .43 145 30 43 1.8 524 14 6.1 78 146 61 112 5.1 4.2 430 . 58 164 45 Apr. 12-20-----9.0 2.2 67 20 1.8 a143 .19 69 14 1.2 255 7.0 Apr. 21-30-----3.2 101 33 35 2.8 a201 .27 103 20 39 1.3 347 May 1-5----40 33 32 a222 .30 2.5 26 37 1.3 400 May 6-8-----13 60 6.2 150 3.6 .50 a365 52 175 43 2.0 655 7.4 May 9-20-----32 3.3 28 22 2.0 a180 .24 93 15 39 1.3 333 7.2 May 21-31-----10 36 3.2 23 101 26 29 2.0 al 79 .24 103 20 1.0 327 June 1-2, 4-12, 14----15 35 236 .32 114 13 39 1.4 390 June 13, 17-20-----16 5.2 53 157 43 3.0 332 .45 156 28 1.9 564 50 June 21-30-----14 4.5 60 142 43 78 .45 3.0 334 144 27 2.2 574 7.3 July 1-4, 6-----10 38 21 101 34 24 a182 .25 2.0 109 29 337 26 .9 6.2 July 7, 9-13-----18 56 5.0 44 152 47 2.8 330 160 36 37 1.5 532 6.7 July 15-24-----14 49 4.8 39 133 30 60 a264 142 33 37 1.4 488 6.5 July 25-30-----9.2 28 2.4 30 72 26 40 2.8 a173 .24 80 21 45 1.5 333 6.3 Aug. 1-10-----14 4.2 55 34 300 115 21 51 492 7.2 2.2 Aug. 11-20-----13 46 5.0 54 133 34 75 2.2 315 .43 136 26 2.0 521 7.3 Aug. 21-31-----13 44 4.5 57 134 34 74 2.2 320 .44 128 18 49 2.2 521 7.1 Sept. 1-10-----16 46 4.8 69 152 36 86 1.2 350 .48 134 10 53 2.6 595 6.5 59 Sept. 11-16-----50 13 6.4 106 185 142 .2 a468 .64 174 22 827 3.5 8.2 Sept. 17-24, 27-30----8.8 7.0 152 194 a605 .82

a Calculated from determined constituents.

TRINITY RIVER BASIN--Continued

672. OLD RIVER NEAR COVE, TEX.

LOCATION.--At Barber Hill Pumping Plant, 5 miles northwest of Cove, Chambers County.

RECORDS AVAILABLE.--Chemical analyses: Short periods during summers of 1946 to 1949, daily records October 1949 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 585 ppm Jan. 15-28; minimum, 105 ppm Feb. 6, 15-16.

Hardness: Maximum, 187 ppm Jan. 1-14; minimum, 50 ppm Feb. 6, 15-16.

Specific conductance: Maximum daily, 1,480 micromhos Jan. 25; minimum daily, 128 micromhos Oct. 12.

EXTREMES, 1949-59.--Dissolved solids: Maximum, 11,300 ppm Oct. 14-29, 1956; minimum, 77 ppm Apr. 29, May 1-2, 1957.

Hardness: Maximum, 2,460 ppm Oct. 14-29, 1956; minimum, 34 ppm Apr. 29, May 1-2, 1957.

Specific conductance: Maximum daily, 18,000 micromhos Oct. 15, 17, 1956; minimum daily, 10 micromhos Apr. 29, 1957.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available for this station.

	Mean		24.3	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved so due at 18		Hard as Co	iness rCO ₃	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO;)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25°C)	pН
Oct. 1-14, 1958 Oct. 15-31 Nov. 1-15 Nov. 16-30		16 14 14 12		24 27 31 35	3.0 3.3 4.0 4.7	1.7 2.5 3.0 3.6	5	87 91 105 118	9.8 21 15 17	20 27 40 49		0.5 .5 .5		a133 173 a186 a212	0.18 .24 .25 .29		72 81 94 107	1 6 8 10	34 40 41 42	0.9 1.2 1.3 1.5	224 263 327 380	7.5 7.3 7.4 7.5
Dec. 1-10		13 13 13 9.4 4.2 6.6		42 54 57 60 60 23	5.7 7.3 8.5 9.1 8.0 2.9	51 86 112 115 139 24	5.6	134 153 149 163 161 64	24 42 61 61 59 20	73 128 166 179 206 34	0.3	.5 1.0 1.8 1.0 .1		433 530 560 585 a142	.37 .59 .72 .76 .80		128 164 177 187 182 69	18 39 55 54 50 17	46 53 58 56 62 43	1.9 2.9 3.7 3.7 4.5	495 731 893 947 1,020 274	8.2 8.2 8.2 8.1 8.0 6.8
Feb. 1-5		9.6 9.8 11 11 11		34 17 26 25 34 45	5.1 1.8 3.3 2.9 4.5 5.8	61 17 29 26 38 57	7 9 5	100 61 98 99 124 138	35 11 15 10 15 34	84 17 32 27 48 79		1.2 1.0 1.2 1.2 1.0		306 a105 a166 a152 233 327	.42 .14 .23 .21 .32		106 50 78 74 103 136	24 0 0 0 2 24	56 42 45 43 44 48	2.6 1.0 1.4 1.3 1.6 2.1	514 187 299 275 384 549	7.2 7.2 7.1 7.2 7.4 7.5
Apr. 1-9		11 11 12 13 10 12		50 18 28 37 22 32	6.4 2.1 3.2 4.2 2.6 3.4	65 23 32 39 24 34	!)	152 69 99 120 75 110	39 14 20 28 18 20	92 22 36 46 26 39	.3 	1.2 1.2 1.2 1.2 1.2		370 a125 a181 a227 a141 214	.50 .17 .25 .31 .19		152 54 83 110 66 94	27 0 2 11 4 4	47 48 46 43 44 44	2.3 1.4 1.6 1.6 1.3	616 218 321 402 252 345	7.8 7.2 7.6 7.5 7.2 7.2
June 1-14		16 20 16 17		36 45 42 43	4.5 5.7 5.1 5.1	31 58 39 41	3	122 130 133 143	25 50 36 30	35 71 44 48		1.2 2.8 1.5		a209 a316 271 278	.28 .43 .37 .38		108 136 126 128	8 30 17 11	39 48 40 41	1.3 2.1 1.5 1.6	363 519 420 432	7.3 7.8 7.4 7.5
26-28 July 29-31		16 22		36 26	4.2 3.5	35 22		127 103	23 9.6	38 23		.8 .8		238 a158	.32		107 79	3 0	41 38	1.5	361 250	7.4 7.6
Aug. 1-4, 6-10 Aug. 11-17, 19-26 Aug. 27-31, Sept. 1-4 Sept. 5-12 Sept. 14-30		22 21 22 19 21		34 45 26 40 53	5.0 5.9 4.0 5.3 6.6	35 58 28 50 75	3	135 142 99 140 165	14 30 12 19 37	40 82 34 68 105	 	.5 .8 1.0 .8		226 330 a176 286 397	.31 .45 .24 .39		105 137 81 122 159	0 20 0 7 24	42 48 51 41 51	1.5 2.2 1.4 2.0 2.6	350 543 290 467 665	7.9 7.8 7.6 7.9 7.9

a Calculated from determined constituents.

TRINITY RIVER BASIN--Continued

673. TRINITY RIVER AT ANAHUAC, TEX.

LOCATION.--At Lone Star Pumping Plant in Anahuac, Chambers County.
RECORDS AVAILABLE.--Chemical analyses: Short periods during summers of 1946 to 1949, December 1949 to September 1959.
EXTREMES, 1949-56.--Dissolved solids: Maximum, 18,400 ppm Aug. 1-13, 1956; minimum, 140 ppm Apr. 12-19, 1955.
Hardness: Maximum, 3,550 ppm Oct. 21-31, 1952; minimum, 45 ppm Apr. 12-19, 1955.
Specific conductance: Maximum daily, 33,700 micromhos Sept. 26, 1956; minimum daily, 199 micromhos Apr. 15, 1955.
REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available for this station.

					Che	mical ana	lyses,	in parts	per mill	ion, wate	er year	October	1958 t	o Septembe	er 1959							
														Dia	solved soli	ds	Hard			So-	Specific	
	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		calculate	d)	ns Co	iCO,	Per-	dium	conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO _z)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 8, 1958 Oct. 16, 23, 29 Nov. 6, 13 Nov. 20, 25		13 20 18		56 64 59	5.2 11 6.5			109 163 167 157	51 71 56	59 115 235 150	=	3.5 7.0 2.0		412 a674 a485	0.56 .92 .66		113 161 204 174	24 28 68 45	54 63 57	3.0 4.8 3.4	433 725 1,160 840	8.0 8.1 8.2 8.1
Dec. 4, 11, 18 Dec. 26, 31 Jan. 8, 1959 Jan. 15 Jan. 21 Jan. 29		15 15 		58 62 	7.2 57 			150 153 160 161 152 168	78 165 	218 890 415 250 628 295	::	6.0 7.0 		a639 1,810 	.87 2.46 		174 389 247 192 320 209	51 264 116 60 196 72	66 75 	5.2 12 	1,120 3,250 1,770 1,220 2,460 1,430	8.0 8.1 7.8 8.2 8.1 7.9
Feb. 5		24		 50	6.2	. :	- - - - -	77 88 51 100 134	 58	109 140 38 36 108	0.4	4.0		398	 .54		95 116 64 108 150	32 44 22 26 40	 54	2.9	562 709 282 365 689	7.7 7.6 7.2 7.6 7.4
Apr. 1, 3, 6, 8Apr. 10, 13, 15, 17, 20, 21, 26, 29		9.8 14		56 25 39	7.6 2.6 5.0		5.3	147 69 108	58 21 38	1.48 36 55	.3	3.5 2.0 3.2		468 157 249	.64 .21 .34		171 73 118	50 17 29	56 44 43	3.4 1.3 1.7	829 282 447	8.2 7.8 7.7
May 12, 15, 18-19, 22, 25, 27-28		9.6		31	3.3	2	:5	96	22	30		2.0		170	.23		91	12	38	1.1	315	7.4
June 1, 3, 8, 9, 12, 13, 15		18		38	4.3	2	1	107	38	51	. 3	2.5		246	.33		112	25	44	1.7	429	7.5
June 17, 19, 22, 24, 26, 29		18		45	4.6		6	125	41	59	.3	2.5		a294	.40		131	29	43	1.7	484	7.3
14, 17 July 20, 21, 24 July 26, 29, 31		18 22 12		51 30	4.3 7.1 3.1	9	52 94 37	126 153 79	38 52 23	64 126 56	.3 .3	2.0 2.0 .8		a300 429 201	.41 .58 .27		122 156 88	19 30 23	48 57 48	2.0 3.3 1.7	482 743 354	7.6 7.8 7.5
Aug. 3, 5		17		19	3.8	4	2	64	14	61	.3	1.8		190	.26		63	LI	57	2.3	320	7.8
21, 24, 28, 31 Aug. 26		16 22 24 25		46 46 62 72	5.2 5.7 11 48	10	1	127 103 139 176 164 126	42 45 77 156	132 770 149 308 920 2,400		2.5 .5 .2 .5		a412 a444 780 1,860	.56 .60 1.06 2.53		136 302 138 200 377 830	32 218 24 56 242 726	59 63 70 76	3.4 4.0 6.5 13	707 2,750 780 1,390 3,330 7,690	7.8 7.9 8.1 8.1 7.9

a Residue on evaporation at 180°C.

TRINITY RIVER BASIN -- Continued

674. TRINITY DAY AT MOUTH OF TRINITY RIVER NEAR ANAIDAC, TEX.

LOCATION.—At four sampling stations in Trinity Bay opposite mouth of Trinity River near Anahuae, Chambers County. Station 2- In Anahuae Channel about 14 miles southwest of Station 2. Station 6- In Anahuae Channel at south end. Station 7- In Trinity Bay about 19 miles seation 6. In Trinity Bay about 19 miles east of Station 6. RECORDS AVAILABLE.—Chemical analyses: October 1950 to September 1959.

Specific conductance, micromhos at 25°C, and chloride, in parts per million, water year October 1958 to September 1959
Station 2 Station 3 Station 5 Station 5

re

June 19	June 9	June 3June 8June 8	May 19	May 11	May 4	Apr. 20	Apr. 10	Apr. 3	Mar. 12	Feb. 12	Jan. 8, 1959	Dec. 4	Nov. 13		Oct. 8, 1958
454 592 708 491 557	489 437 639 389 352	397 349 380 573	295 316 327 311 290	458 279 326 355	351 411 455 446	281 258 252 346 328	275 289 211 273	654 741 733 801	397 649 849 680	416 461 255 367	1,980 1,480 2,490 1,720	1,160 1,030 1,210 2,720 3,830	1,050 7,990 880 806	755 829	Station Conductance 430
52 91 112 72 77	63 51 109 33 29	60 37 41 100	31 26 34 27 27 32	61 29 40 40	49 49 30	35 32 32 40 30	53 57 26 38	88 124 117 131	62 98 164 85	90 98 34 39	492 308 660 375	230 185 245 700 1,060	200 2,550 157 144	94 123 130	2 Chloride 59
404 533 568 867 583	479 436 510 387 341	351 359 384 404	311 316 372 306 292	486 278 324 375	351 411 468 449	281 262 254 254 347 322	306 288 211 273	626 744 736 818	457 634 845 700	426 474 255 371	1,750 1,270 2,530 1,700	1,090 1,020 1,230 2,720 3,800	1,070 6,090 821 805	609 756 826	Station 3 Conductance C
39 76 76 181 85	60 51 71 35 28	40 38 42 50	36 26 36 27 27	67 29 40 46	30 49 49	35 32 30 30	61 58 27 38	87 124 117 136	66 97 164 86	92 101 34 40	410 260 670 365	212 182 252 720 1,060	210 1,790 138 146	94 123 128	121 1
400 463 583 553 557	477 436 520 386 346	314 347 380 409	305 313 326 305 287	442 280 324 352	352 430 451 447	279 293 251 367 339	324 288 265 270	632 744 729 803	467 636 828 688	460 520 253 377	2,130 1,430 2,560 2,280	1,320 1,020 1,240 4,450 3,800	1,010 2,750 901 795	607 821 837	Station Conductance 430
38 56 89 82 77	63 51 72 34 29	36 41 49	32 26 36 26 31	57 29 40 41	30 52 60 49	34 44 32 42 32	58 38 38	87 124 115 132	69 98 156 86	92 110 34 40	532 31.5 670 560	285 180 255 1,280 1,060	192 730 166 141	94 138 132	Ch 6
404 462 600 502 628	.510 435 612 386 354	431 369 379 588	305 336 489 320 5287	453 290 327 343	351 414 498 449	279 257 291 352 340	276 288 211 267	1,000 · 746 · 726 · 809	394 636 818 686	456 582 264 373	1,970 2,260 2,580 2,580	9,710 1,030 3,550 	1,010 2,750 875 853	612 95 755 122 796 122	Statior Conductance 427
40 57 82 75 85	70 51 98 34 29	72 42 41 103	30 32 81 30	59 30 40	30 50 73 49	34 32 42 42 32	53 58 24	198 123 114 134	62 98 155 84	94 121 36 40	472 575 680 800	3,160 185 1,020 5,280	192 728 155 154	95 122 122	Chloride

TRINITY RIVER BASIN--Continued

674. TRINITY BAY AT MOUTH OF TRINITY RIVER NEAR ANAHUAC, TEX.--Continued

		Statio		Statio		ion, water year Oc Station		Station	
	Date of Collection	Conductance	Chloride	Conductance		Conductance		Conductance	
uly	1, 1959	700	1 32	588	104	591	103	667	116
uly	3	321	27	319	27	324	2.7	447	46
	6	388	32	518	71	386	32	386	31
	10	388	38	386	38	461	59	388	37
									3,
uly	13	463	59	463	59	561	81	513	72
uly	14	518	72	662	109	518	72	583	90
uly	17	583	83	576	82	577	84	582	85
uly	20	963	183	756	122	754	123	780	125
	21	648	99		1.00				
		(50000)	W	647	100	646	100	645	99
	24	851	1 72	843	169	845	170	851	169
	26	435	67	439	67	435	67	438	67
	29	313	49	296	43	316	50	304	48
uly	31	307	57	301	57	299	56	301	57
ug.	3	303	57	320	62	301	57	301	58
ug.	5	324	60	328	60	326	60	343	64
ug.	7	564	100	569	100	556	98	555	97
ıg.	10	569	102	569	103	569	103	566	102
					00000000		(2000)	1000000	5764551
ug.	12	578	104	582	105	579	104	583	105
ug.	14	695	120	701	127	695	126	693	126
ıg.	17	722	133	712	133	704	131	709	131
ıg.	19	790	156	796	157	790	155	891	179
		01.5		201					
	21	815	157	721	134	783	152	757	143
	24	628	126	667	129	756	151	761	153
	26	1,300	312	1,300	310	2,350	632	1,110	258
	28	567	102	562	100	593	105	600	106
ag.	31	570	95	514	95	510	93	510	92
ept.	. 2	660	122	665	125	674	127	670	126
ept.	4	690	134	709	138	649	121	650	121
ept.	. 7	682	129	682	130	708	140	722	142
ept.	9	877	181	848	172	988	216	1,160	267
	11	886	168	872	167	01.0	1.70	044	106
					167	918	178	944	186
	14	1,510	370	1,510	370	1,800	455	1,850	480
	16	1,260	265	1,250	265	1,180	248	1,220	260
ept.	18	1,430	318	1,430	315	1,420	310	1,420	310
ept.	21	4,470	1,320	5,400	1,620	1,450	320	8,390	2,680
ept.	22	8,040	2,550	8,050	2,550	8,860	2,820	9,130	2,950
pt.	25	5,460	1,620	5,380	1,620	6,470	2,000	7,420	2,320
nt.	28	2,210	570	2,280	600	5,770	1,750	5,550	1,680

TRINITY RIVER BASIN -- Continued

MISCELLANEOUS AMALYSES OF STREAMS IN TRINITY RIVER BASIN IN TEXAS

	Mean			Ę.	Mag-	Š	ę.	Bicar-	Sul-	Chlo-	Fluo-	ź	ò	ت م	Dissolved solids (calculated)	Hds t)	Har as O	Hardness as CaCO,	Per-	So-	Specific conduct-	
Date of collection	charge (cfs)	Silica (SiO ₂)	(Fe)	Ca)	sium (Mg)	dium (Na.)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	(NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon-	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
							4	428. WES	I FORK I	WEST FORK TRINITY RIVER NEAR JACKSBORO	IVER NEA	AR JACKSE	SORO									
Apr. 21, 1959	34	9.0		38	9.4	06		7.4	12	181	0.3	1.2		377	0.51		134	73	09	3.4	738	6.9
							LAR	LAKE AMON G. CARTER 6 MILES SOUTHWEST OF BOWIE	. CARTER	6 MILES	SOUTHWE	ST OF BC	WIE									
Apr. 21, 1959		1.0		24	6.4	8.0	5.4	06	8.8	17	0.0	0.5		111	0.15		80	9	17	5.0	220	6.9
							502. E	ELM FORK TRINITY RIVER RESERVOIR 6-0 NEAR MJENSTER	TRINITY	RIVER RE	SERVOIR	6-0 NEAB	MUENSE	23								
Jan. 15, 1959		3.2		58 62 45	3.9	35		152	25 27 27	77 68	0.5	2.5		294 273 265	0.40		161	36	39	1.6	514	7.7
									FORK IR	ELM FORK TRINITY RIVER NEAR MJENSTER	VER NEAR	MUENSTE	P.									
Jan. 15, 1959	0.8	10		190	17	175		230	55	480 518	0.2	0.0		1,040	1.41		544 590	356	41	3.3	1,920	7.7
21								515.		CLEAR CREEK NEAR SANGER	EAR SANC	ER										
Apr. 22, 1959	8.7	9.6		96	14	80	H	191	99	180	0.3	0.0		519	0.71		282	150	38	2.1	951	7.7
							HICK	HICKORY CREEK AT US HIGHWAY 77 NEAR LEWISVILLE	C AT US	HIGHWAY	77 NEAR	LEWISVIL	31									
Apr. 22, 1959		2.0		54	5.0	27		141	31	95	0.1	0.2		234	0.32		155	07	27	6.0	737	7.9
							SOUT	SOUTH PRONG CREEK AT US HIGHWAY 77 NEAR WAXAHACHIE	CREEK AT	US HIGH	WAY 77 N	TEAR WAXA	HACHIE									
Apr. 22, 1959		111		78	6.0	5.7	1.2	218	21	7.2	0.1	1.5		253	0.34		21.3	35	2	0.2	075	7.6
									MILL CR	MILL CREEK AT MILFORD	ILFORD											
ABE: 22. 1959		10		80	1.0	6.1	1.0	216	20	8.0	0.1	7.7		240	0.33		204	27	4	0	1,23	1 5

SAM JACINTO RIVER BASIN
MISCELLANEOUS ANALYSES OF STREAMS IN SAN JACINTO RIVER BASIN IN TEXAS

-	Mean		5	S.	Mag-	- S		Bicar-	Sul-	Chlo	Fluo	ž.	å	Dis O	Dissolved solids (calculated)	sp <	Hardness as CaCO,	00	Per-	So-	Specific conduct-	
	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	sium (Mg)		sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₂)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hď
							680.	WEST FO	RK OF S.	WEST FORK OF SAN JACINTO RIVER NEAR CONROE	O RIVER	NEAR CO	NROE									
Mar. 18, 1959	0.47	20		90	8.4	07		132	7.6	81	0.2	0.0		269	0.37		144	36	3.7	7.1	667	7.5
								685.		SPRING CREEK NEAR SPRING	EAR SPR	ING										
Mar. 18, 1959	21.0	1.5		23	4.1	30		59	5.9	57	0.1	0.0		167	0.23		74	22	47	1.5	312	7.4
								.069	CYPRESS	690. CYPRESS CREEK NEAR WESTFIELD	AR WEST	FIELD										
Mar. 18, 1959	1.0	9.6		31	5.8	101		118	2.5	140	4.0	0.2		371	05.0		102	5	89	7.4	693	7.3

BRAZOS RIVER BASIN

805. DOUBLE MOUNTAIN FORK BRAZOS RIVER NEAR ASPERMONT, TEX.

LOCATION.--At gaging station at bridge on U. S. Highway 83, 8 miles downstream from Mountain Creek, and 10 miles south of Aspermont, Stonewall County.

DRAINAGE AREA.--7,980 square miles, approximately, of which 6,470 square miles is probably noncontributing.

RECORDS AVAILABLE.--Chemical analyses: October 1948 to November 1951, October 1956 to September 1959.

Water temperatures: November 1949 to November 1951, October 1956 to September 1959.

Sediment records: November 1949 to September 1951.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 4,840 ppm Aug. 1-7; minimum, 715 ppm July 1-6.

Hardness: Maximum, 2,210 ppm Mar. 16-31; minimum, 273 ppm May 11-15, 18-21.

Specific conductance: Maximum daily, 6,890 micrombos Aug. 3; minimum daily, 860 micrombos July 3.

Water temperatures: Maximum, 94°F June 18; minimum, 34°F Jan. 5, 15, Feb. 1-2.

EXTREMES, 1948-51, 1956-59.--Dissolved solids: Maximum, 6,350 ppm Feb. 23-28, 1958; minimum, 636 ppm Oct. 22-28, 1957.

Hardness: Maximum, 2,510 ppm Aug. 5, 8, 1951; minimum, 193 ppm Oct. 22-28, 1957.

Specific conductance: Maximum daily, 10,400 micrombos Feb. 25, 1958; minimum freezing point Jan. 4, 1950, Jan. 29, 1951, Jan. 16, 1957.

REMARKS.--Values reported for dissolved solids: Concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents. Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Mean	20000		Cal-	Mag-	So- Po	- Bi	icar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia	solved so	olids	Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₁)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium siu (Na) (K	bo	onate (CO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	mhos at 25°C)	pН
Oct. 1-3, 12-13, 1958- Oct. 4-11, 14-20 Oct. 21-31	8.27 .77 .28 54.3	10 11 14 13 11		1.69 405 570 640 1.67 385	1.7 50 75 86 20 54	215 629 555 529 262 697	1	106 116 80 109 126 140	500 1,130 1,620 1,800 474 1,100	248 930 840 805 332 1,020		3.0 .0 .8 1.0 4.0 1.0		1,210 3,210 3,710 3,930 1,330 3,340	1.65 4.37 5.05 5.34 1.81 4.54	237 71.7 7.71 2.97 195 132	492 1,220 1,730 1,950 498 1,180	404 1,120 1,660 1,860 395 1,070	49 53 41 37 53 56	4.2 7.8 5.8 5.2 5.1 8.8	1,850 4,700 4,930 5,050 2,120 4,930	8.0 7.9 7.5 7.6 7.8 7.9
Dec. 1-15	.59	14 16 12 11		575 630 660 685	72 73 82 93	790 665 558 603	9.1	144 154 142 136	1,600 1,780 1,760 1,820	1,180 950 910 990		1.0 1.0 .0		4,300 4,190 4,060 4,270	5.85 5.70 5.52 5.81	19.2 6.67 5.04 3.23	1,730 1,870 1,980 2,090	1,610 1,750 1,870 1,980	50 44 38 39	8.3 6.7 5.4 5.7	5,850 5,400 5,320 5,590	8.0 8.0 8.0 8.1
Feb. 1-10	a .09	13 12 11 13 12		665 690 690 690 720	103 110 106 96 101	452 345 334 556 596	1	120 122 124 107 122	1,550 1,330 1,250 1,970 2,000	960 1,020 1,050 840 940		.0 .5 .0 2.0		3,800 3,570 3,500 4,220 4,430	5.17 4.86 4.76 5.74 6.02	3.28 .87 1.89 1.25 2.75	2,080 2,170 2,160 2,120 2,210	1,980 2,070 2,060 2,030 2,110	32 26 25 36 37	4.3 3.2 3.1 5.3 5.5	5,510 5,690 5,730 5,300 5,590	7.7 7.8 7.7 7.5 7.7
Apr. 1-7	175 25.3 .63 21.4 212 135	12 11 9.4 13 15 16 16 20		680 283 442 680 555 232 83 135 470	106 24 46 98 72 25 16 22 80	574 16 175 406 553 506 246 222 270 587	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	83 90 78 123 101 172 172 144 116	2,030 736 1,240 1,950 1,560 653 280 412 1,410	860 242 580 830 760 280 228 330 860	0.5	.5 5.6 1.5 1.0 2.2 2.0 1.5 3.0 2.0		4,310 1,520 2,760 4,180 3,520 1,540 966 1,260 3,480	5.86 2.07 3.75 5.68 4.79 2.09 1.31 1.71 4.73	1.63 718 189 7.11 203 881 352 391 36.8	2,130 805 1,290 2,100 1,680 682 273 428 1,500	2,060 731 1,230 2,000 1,600 541 132 310 1,410	37 32 41 36 40 44 64 58	5.4 2.7 4.9 5.2 5.4 4.1 5.8 5.7 6.6	5,400 2,110 3,690 5,200 4,560 2,200 1,520 2,000 4,680	7.3 7.6 7.5 7.6 7.6 7.6 7.7 7.9
June 1	1,535 2,933 29.4 751 4,604 258 207 749	16 16 17 15 15 16 16 16		255 105 350 134 110 160 282 258 415	27 16 50 17 14 19 27 19	212 136 637 148 99 180 298 167	1 1 1 1 1 1	77 103 128 104 113 110 106 96 89 104	706 300 1,010 374 318 454 760 700 1,170	870 275 145 940 172 88 218 420 200 1,160		1.2 3.0 .5 3.2 3.0 1.5 1.2		1,540 790 3,060 947 715 1,100 1,850 1,400 3,660	2.09 1.07 4.16 1.29 .97 1.50 2.52 1.90 4.98	6,380 6,260 243 1,920 8,890 766 1,030 2,830 315	2,000 747 328 1,080 404 332 477 814 722 1,200	1,940 662 223 994 312 242 390 736 648 1,110	38 47 56 44 39 45 44 33 59	3.4 3.3 8.4 3.2 2.4 3.6 4.5 2.7	5,310 2,190 1,230 4,540 1,420 1,060 1,630 2,650 1,930 5,230	7.8 7.5 7.5 7.5 7.5 7.4 7.6 7.5 7.2 7.4
Aug. 1-7	948 52.0 5.01 a .12	18 14 23 20 20 18		590 166 195 485 685 685	80 17 27 70 94 97	969 110 257 717 559 518	1 1 1		1,600 446 565 1,340 1,930 1,910	1,530 126 338 1,120 860 810		1.0 3.2 2.0 1.0 2.8		4,840 953 1,460 3,800 4,200 4,100	6.58 1.30 1.99 5.17 5.71 5.58	64.8 2,440 205 51.4 1.36 2.10	1,800 484 598 1,500 2,100 2,110	1,720 406 506 1,420 2,010 2,010	54 33 48 51 37 35	9.9 2.2 4.6 8.0 5.3 4.9	6,690 1,310 2,140 5,240 5,210 5,080	7.2 7.6 7.9 7.8 7.2 7.2

a Includes days of less than 0.05 cubic feet per second discharge.

October 1958 to September 1959 given in Water-Supply Paper 1632.

812. CROTON CREEK NEAR JAYTON, TEX.

LOCATION.--At gaging station, 300 feet upstream from county road ford, 1½ miles upstream from mouth and about 8 miles northeast of Jayton, Stonewall County. DRAINAGE AREA.--310 square miles, approximately. RECORDS AVAILABLE.--Chemical analyses: May to September 1959.

Chemical analyses, in parts per million, May to September 1959

				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Di	ssolved so	lids	Hard as Co	dness aCO,	Per-	So- dium	Specific conduct-		Density
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН	at 20°C
May 6, 1959	17.0					4,780			2,820	7,530						3,230		76		22,600		1.009
July 9	10					500		73	871	755						955	895	53		3,810	7.1	
July 17	.05					4,180			2,710	6,760										20,400		1.006
July 18						5,490			3,040	9,020										25,400	22	1.009
July 22	.37					3,240		22	2,700	5,100										16,900		1.004
Aug. 13	.25					3,300			2,580	5,280										16,800		1.004
Aug. 14	.04					3,610			2,720	5,800										18,100		1.005
Aug. 15	0			1		3,790			2,770	6,040										18,700		1.005
Aug. 16	0					3,920			2,850	6,560										19,400		1.006
Aug. 17	0					3,940			2,800	6,370										19,200		1.005
Aug. 18	0					3,950			2,840	6,560										19,700		1.006
Aug. 19	0			1		4,260			2,910	6,860										20,400		1.006
Aug. 20	22					3,270			2,590	5,030						2,740		72		16,700		1.004
Aug. 21	4.11					1,260		73	2,060	1,980						2,190	2,130	56		8,340	7.5	
Aug. 22	.58	1		1		2,070			2,310	3,270						2,580		64		12,100		1.001
Aug. 24	.04					2,270			2,380	3,640		8				2,670		65		13,000		1.002
Aug. 25	0					2,920			2,620	4,640						3,000		68		15,600		1.003
Aug. 28	0					5,490			2,860	8,430		1 3		1						24,600		1.008

Note: Values given in this table are expressed in parts per million and should be multiplied by the density, where given, in any computation of loads.

813. SALT FLAT CREEK AT WEIR B NEAR ASPERMONT, TEX.

LOCATION. -- At mouth, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE. -- Chemical analyses: October 1956 to March 1959.

				,	Ch	emical a	nalyses	, in part	s per mil	llion, Oct	ober 1	958 to N	farch 1959									
				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-		ssolved so		Hare as Ce		Per-	So- dium	Specific conduct-		Density
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (Cl)	ride (F)	trate (NO ₁)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25 C)	pН	at 20°C
Oct. 22, 1958 Nov. 21	0.34 .46					90,000 89,000			3,050 3,180	142,000 140,000						10,300 10,100		95 95		182,000 181,000		1.180 1.178
Dec. 17Jan. 21, 1959	.28 .31					88,300 85,500			3,200 3,280	141,000 139,000						9,670 9,950		95 95		150,000 148,000		1.179 1.176
Feb. 19 Mar. 17 Mar. 26	.28	24		1,790 1,810		90,300 99, 92,400	000	32 38	3,130 2,870 3,010	143,000 158,000 147,000			246,000	397		9,710 10,500 9,780	10,500 9,750	95 95 95	420 406	150,000 173,000 150,000	7.2	1.184 1.198 1.187

Note: Values given in this table are expressed in parts per million, and should be multiplied by the density in any computation of loads.

813.5. SALT CROTON CREEK AT WEIR C NEAR ASPERMONT, TEX.

LOCATION.--Half a mile downstream from Salt Flat Creek, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: October 1956 to March 1959.

Chemical analyses, in parts per million, October 1958 to March 1959

				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-		solved so		Hard as Co	iness ICO ₇	Per-	So- dium	Specific conduct-		
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	рН	Densit at 20°C
Oct. 22, 1958	0.57 1.15					91,100 88,100			3,270 3,440	144,000 138,000						9,720 9,350		95 95		182,000 181,000		1.183
Dec. 17 an. 21, 1959	. 70 . 76					85,200 89,600			3,440 3,520	135,000 140,000						8,800 9,000		95 96		148,000 167,000		1.171
eb. 19 ar. 26	.64 .74	25		1,720	1,110	91,600 95,300		41	3,390 3,010	145,000 150,000			251,000	407		9,120 8,860	8,820	96 96	441	150,000	7.4	1.184

Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads.

814. SALT CROTOW CREEK AT WEIR D NEAR ASPERMONT, TEX.

LOCATION.--About 500 feet upstream from Maystack Creek and 1,000 feet upstream from gaging station, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: October 1936 to September 1959.

Chemical analyses, in parts per million, water year October 1958 to September 1959

961'1	Hq	mocro- mines at more at more at more at 2S° C) 184,000 184,000 184,000 184,000 184,000 184,000 185,000	-qrosbs noit oitsr	-os muib -os 26 26 26 26 26 26	-noVn -notabo 	cium, magne- sium 9,160 9,450 9,450 9,910 9,910 9,130	znoT rəq yab	raq -aras food 	Parts taq -lim noil 	Ni- trate (NO ₃)	ride (F)	(CH)	5ul- fate (SO.) 3,110 2,800 2,800 3,150 3,070 8,440	Bicar-	esst muis (X)	008'16 002'06 009'76 000'76 000'76 (PN) unip	(\$M)	(A2)	lron (Fe)	(SiO ₂)	-siG (s1s) (s1s) 27.0 27. 28.	Date of collection Occober 9, 1958 Nov. 22 Nov. 51 Date. 5 Date. 5
961'I		000,081 000,081 000,081		\$6 \$6 \$6 96		084'6 094'6 084'6						175,000 141,000 148,000 152,000	040'E 040'E 051'E			002'06 009'76 008'16		 			17. 67. 27.	0.61, 22
		000,021 000,281 000,021		\$6 \$6 \$6		087'6 094'6			::			175,000 141,000 148,000 152,000	040'E 040'E 051'E			002'06 009'76		 			Σ7. Σ8.	Nov. 6
0511		000,581		\$6 \$6		084,6						000°771	070,£			002,06					Σ7. Σ8.	Nov. 21
		000,081		56		078,6						000°771	۵,440			008'16					28.	Dec. 5
181.1		000'051													1			1				L
281.1		000'051									1								- 1		99.	
V						041'6				1	1	141,000	3,380			004,68			1	\$1000000		17 1000
		000'051		56		016'6						143 '000	3'410			008'16					1.03	6561 ,0 .nat
571.1		000'671		56		087'6						000'681	005,€			007,78					95.	Jan. 21
151.1		000'091		56		015,8						121,000	094, £			006'94					91.1	Feb. 4
		152,000		96		050,6						000 ' 75 T	076'7			.007,76			1		79.	Feb. 19
0.000		000,521		96		055,6						000,721	076'7			000'66		1			ES.	11 .ask
1,203	٥.٢	125,000	577	96	047'6	005'6		787	000' 797			000'651	075,5	17		008'66	082,1	007,1		zz	07.	Z . TEM
	5.T	152,000	854	96	096'8	066,8	3	TE7	797 000			000,821	3,240	38		000'00T	091'1	069'T	1	22	76.	aqA
		000'671		96		072,6						155,000	088,2			008,86					78.	Apr. 23
		002,48		٤6		088'5						008'97	2,800			29,500			1		28.	мау 6
661'1		000'871		96		078'8						000'951	014,2			000'66					٤9٠	KeM
1.033		001'65		86		3,100	1					008,72	076' I			008,71			- 1		96.1	June
		000'551		96		057,6	1					000'091	2,880			000'101			- 1		09.	1 June 19
		008,12		88		047'1						061,8	071,1			061'5			1		31.0	July 9
871.1		000, £21		56		027'6						000'071	3,620			006,88					51.	
		000'671		96		10,200						000'091	079,5			000'001					85.	9 .8nV
1000	100000	000'001		76		049'9	1					001,08	3,240			008,78			- 1		15.	
		134,000		56		085,8						000,701	088, 5	I I		000,101		III			64.	Suk
		000'251		56 96		008,01	1					000'091	2,930			000,001					85. 92.	Aug. 30St. 18e

Note: Values Stven in this table are expressed in parts per million and should be multiplied by the density in any computation of loads.

814.5. HAYSTACK CREEK NEAR ASPERMONT, TEX.

LOCATION.--About 400 feet upstream from mouth, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: October 1956 to September 1959.

Chemical analyses in parts per million water year October 1958 to Contember 1959

				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-		solved sol		Hard as Co		Per-	So- dium	Specific conduct-		
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₁)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН	Densit at 20°C
October 9, 1958	0.17					40,300 39,900			4,600 4,610	63,700 63,200				::		6,900 6,910	-:	93 93		120,000		1.079
Nov. 6	.20					38,600 35,200			4,440	59,800 55,500						6,600 6,170		93		116,000		1.076
Dec. 5	.23					36,400			4,400	57,100						1000				110,000		1.070
Dec. 17	.26					35,300			4,230	55,200						6,390 5,990		93		97,000		1.072
Jan. 1, 1959	.20					37,400			4,220	57,800						6,190		93		100,000		1.059
Jan. 21	.17					44,900			4,610	70,300						6,730		94		112,000		1.088
Feb. 4	.28					37,500			4,400	58,100						6,190		93		109,000		1.075
Feb. 19	.22					38,200			4,330	59,500						6,370		93		103,000	**	1.076
Mar. 26	.18	53		1,840	573	44,300		77	4,800	68,900			121,000	179		6,860	6,880	93	231	104,000	7.9	1.078
Apr. 7	.43	46		1,660	494	43,500		87	4,280	67,300			117,000	172		6,170	6,100	94	241	110,000	7.9	1.084
Apr. 23	.17	20		1,710	506	38,500		72	4,370	60,300			105,000	154		6,350	6,290	93	210	103,000	7.5	1.078
May 6	.11					30,900 45,500			4,140 5,050	48,500 71,500						5,880 7,440		92		87,200		1.061
				1000												7,440		93		112,000		1.091
June 2	.21 a .06					21,600			3,440	33,600						4,840		91		68,200		1.042
July 9	1.96					5,160			4,870 2,230	69,000 8,120						6,990		93		113,000		1.087
July 22	a .01					41,500			4,870	65,600						2,530 7,200		93		23,600		1.010
Aug. 5	.17					58,400			E 110	00.000						2014/00/20		0.5				
Aug. 12	.03					39,100			5,110	90,800						8,340		94		125,000		1.115
Aug. 20	.04					38,900			4,600	60,800						7,200 6,860		92		102,000		1.078
Aug. 30	.14					48,600			5,250	75,700						7,550		93		115,000		1.078
Sept. 18	a .06		1			44,400			4,880	68,900						7,350		93	- 22	114,000		1.096

a Field estimate.

Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads.

815. SALT CROTON CREEK NEAR ASPERMONT, TEX.

LOCATION.--At gaging station just below the mouth of Haystack Creek and about 20 miles northwest of Aspermont, Stonewall County.
DAILMAG MEA.--C9 square males, approximately.
RECORDS AVAILABLE.--Chemical analyses: October 1956 to September 1959.
RECORDS AVAILABLE.--Chemical analyses: October 1958 to September 1959 given in Water-Supply Paper 1632.

	Density	at 20°C		1.170	1.189	1.174	1.150	1.163	1.163	1.156	1.168	1.142	1.177	1.186	1.181	1.169	1,188	1.051	1.181	1.031	1.183	1.012	:	1.131	1.200	1.057	1.114	1.099	1.196
		ЬН		;	1	;	1	;	;	1	;	1	;	1	7.5	7.6	1	:	1	;	;	1	1	1	1	:	:	1	1
Specific	conduct-	(micro-	mhos at 25°C)	178,000	183,000	179,000	174,000	176,000	146,000	146,000	147,000	155,000	149,000	150,000	149,000	147,000	147,000	77,200	147,000	57,000	151,000	27,300	9,240	133,000	149,000	85,000	125,000	117,000	156,000
Ş	dium	adsorp-	ratio	;	1	!	;	:	;	1	1	į	;	i	397	401	1	1		;	1	:	1	;	1	;	;	:	;
	Per-	so-	dium	95	95	95	95	95	95	95	9.2	9.5	66	96	98	96	96	92	96	93	66	88	1	9.5	96	92	76	76	96
100	5	Non-	carbon- ate	:	:	;	1	;	;	;	;	1	;	1	9,250	8,380	:	1	;	;	1	-	;	1	;	;	;	1	:
Hardness	88	Cal-	magne- sium	9,320	9,760	9,450	9,220	8,860	8,510	8,750	8,730	8,230	9,180	9,270	9,290	8,420	9,260	7,680	8,980	2,810	0,640	1,840	-	8,310	9,830	5,680	7,990	7,420	9,780
ds		Tons	per																										
Dissolved solids	(calculated)	Tons	acre- foot	;	;	;	;	;	;	;	;	;	;	1	376	356	;	1	1	;	;	;	1	1	1	;	;	1	:
Diss	(ca	Parts	mil- lion	;	1	;	;	;	1	1	1	1	!	1	234,000	224,000	;	1	;	1	;	1	:	1	;	;	;	!	1
	Ä.	trate	(NO ₂)			_																							
	Fluo-	ride	Ē			340																							
	Chlo-	ride	 (j)	132,000	148,000	135,000	126,000	129,000	128,000	132,000	133,000	113,000	139,000	145,000	140,000	133,000	147,000	40,900	142,000	26,400	144,000	10,200	2,800	104,000	155,000	44,900	89,800	78,300	153,000
	Sul-	fate	(2O')	3,660	2,930	3,470	3,690	3,690	3,480	3,440	3,610	3,820	3,700	3,180	3,300	3,280	3,200	2,860	3,100	086,1	3,440	1,450	059	3,910	2,710	3,130	3,960	4,560	2,890
	Bicar-	bonate	(HCO ₃)	:	!	;	:	;	;	1	;	1	1	;	54	20	;	;	;	;	;	;	;	:	1	:	;	!	:
	å .	tas-	3																										
	So-	dium	(Ng)	84,300	94,500	85,600	79,300	81,700	81,300	82,600	84,400	71,800	88,000	92,300	88,100	84,600	93,400	25,400	89,400	16,700	89,700	6,430	1,790	005, 39	98,800	28,400	57,000	49,500	006,96
	Mag-	sium -	(Mg)	:	;	:	;	;	;	;	;	;	;	;	1,180	1,010	;	;	;	1	;	1	;	!	;	;	:	;	
		cium		1	1	1	;	1	:	:	;	;	1	:	1,780	1,710	;	;	!	;	:	;	;	1	1	:	;	:	:
	_	(Fe)																											
	::	(SiO ₂)		;	;	;	;	;	;	;	;	;	:	;	28	26	;	;	;	1	;	;	;	;	;	;	;	;	;
	i	charge	(cfs)	0.88	.73	. 73	.83	.81	.78	1.08	.83	1.36	.72	06.	.73	1.34	.86	. 58	.71	2.95	. 56	36.6	280	.51	.55	17.	147	87.	.82
		Date of collection		Ост. 9, 1958	Oct. 22	Nov. 6	Nov. 21	Dec. 5	Dec. 17	Jan. 6, 1959	Jan. 21	Feb. 4	Feb. 19	Mar. 11	Mar. 26	Apr. 7	Apr. 23	May 6	May 19	-	:	;	1	July 22	Aug. 5	Aug. 12	Aug. 20	Aug. 30	Sept. 18

Note: Values given in the table are expressed in parts per million and should be multiplied by the density, where given, in any computation of loads.

816. SALT CROTON CREEK AT MOUTH NEAR ASPERMONT, TEX.

LOCATION.--At junction with Salt Fork Brazos River, 15 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: December 1957 to June 1959.

Chemical analyses, in parts per million, October 1958 to June 1959

				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-		ssolved so		Hard as C	iness aCO;	Per-	So- dium	Specific conduct-		Density
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₁)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25°C)	pН	at 20°C
Oct. 9, 1958	0.29					39,700 72,700			3,850 3,770	62,600 117,000						7,750 8,890		92 95		119,000 169,000		1.078
Dec. 4	.78 1.34					74,700 77,200			3,620 3,580	119,000 122,000						8,880 8,840		95 95		171,000 143,000		1.149
Feb. 5 Mar. 12	1.08					76,400 93,800			3,640 3,290	120,000 149,000						8,330 9,570		95 96		159,000 151,000		1.152 1.191
Apr. 8 May 5 May 20	14.3	29		921	296	27,200 8,670 34,500		57	1,850 1,730 2,780	43,000 13,400 53,900			73,300	105		3,520 2,220 5,290	3,470	94 89 93	200	82,700 33,000 94,300	7.3	1.053 1.016 1.067
June 18	a .05					35,100			3,570	56,600						6,360		92		98,300		1.069

a Field estimate
Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads.

820. SALT FORK BRAZOS RIVER NEAR ASPERMONT TEX

LOCATION.--At gaging station at bridge on U. S. Highway 83, 5½ miles downstream from Salt Croton Creek and 13.2 miles northwest of Aspermont, Stonewall County. DRAINAGE AREA.--4,830 square miles, approximately, of which 2,770 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: October 1945 to September 1951, October 1945 to September 1959.

Water temperatures: October 1948 to September 1951, October 1956 to September 1959

EXTREMES, 1958-59. -- Dissolved solids: Maximum, 99.200 ppm Mar, 30-31; minimum, 2.130 ppm Aug. 8-12.

Hardness: Maximum, 6.200 ppm Mar, 30-31; minimum, 440 ppm Aug. 8-12.

Specific conductance: Maximum daily, 115,000 micromhos Mar. 30: minimum daily, 2.870 micromhos July 2.

Water temperatures: Maximum, 95°F July 5; minimum, freezing point on Dec. 13, Feb. 6.

EXTREMES, 1948-51, 1956-59.--Dissolved solids: Maximum, 99,200 ppm Mar. 30-31, 1959; minimum, 1,280 ppm June 2-4, 1957.

Hardness: Maximum, 6,200 ppm Mar. 30-31, 1959; minimum, 372 ppm May 19-23, 24 (12-10 p.m.), 1951.

Specific conductance: Maximum daily, 115,000 micromhos Mar. 30, 1959; minimum daily, 1,820 micromhos June 3, 1957. Water temperatures: Maximum, 95°F July 5, 1959; minimum, freezing point on many days during winter months.

REMARKS, -- Records of specific conductance of daily samples available in district office at Austin. Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632

Chemical analyses, in parts per million, water year October 1958 to September 1959 Hardness Specific as CoCO. Mean Mag-Cal-Po-(calculated) Perconduct. Sa Ricar-Sul. Chlo-Fina Nidium Density dis-Silica Iron netascent ance nН cium Date of collection dium bonate fate ride ride trate Parts Tons Caladsorp. 91 charge (SiO.) (Fe) .i.m -i... Tons /_:--a (Ca) (Na) (HCO) tion (Mg) (SO,) (CI) (F) (NO,) per Der cium. 20°C (cfs) (K) carbon. dium mhos at per ratio milacre. magne day ate 25 C) lion foot sium Oct. 1-4, 12-13, 1958--31.8 11 534 110 3 780 105 1 310 6 060 11.900 16 3 1 020 1.780 1 700 18 500 .007 ___ 30 1.017 Oct 5-9----4.00 9.4 885 197 8.590 116 2 190 13 700 2 920 122 25.600 35 4 276 26 68 36 7.00 Oct - 10-11 14-31----2.33 1.120 13,600 156 2.800 21.700 3 800 53 900 39.600 55 3 2/.0 4.020 22 93 Nov. 1-15-----5.75 13 1.300 15,100 139 3,030 24.200 1 030 ___ 44 000 61 6 683 4 490 4 370 22 98 58 600 Nov. 16-30-----1.91 9.0 1.140 7.8 261 13,700 140 2,630 21 900 3,800 88 95 53.600 1.027 39.700 55 4 3.920 ___ 205 Dec 1-15----.61 14 1.250 296 16.300 132 3,100 25,900 46.900 65.8 77.2 4 340 4 230 89 108 56 400 7.9 1.032 --Dec. 16-31-----.88 11 1,290 323 19,100 175 3,030 30,300 54 100 4 550 4,400 90 63 600 1.038 76 4 129 123 --Ian 1-20 1959-----.72 10 1,270 19.800 343 176 3.080 30.800 55 400 78.3 108 4.580 4.400 90 65.100 7.3 1.039 --127 Ian 21-31-----.72 12 1,340 392 20,200 157 3,180 32,200 --57,400 81.2 112 4.830 90 125 69,500 7 2 1.040 4 960 Feb. 1-6-----1.75 11 462 1.380 29.200 143 3,050 46,400 80.600 116 381 5.340 5.230 173 89.300 Feb. 7-28-----52,200 62.0 4,990 .44 13 1.360 388 18,100 164 3,280 29,000 73.5 4.850 112 63,900 7.8 1.036 .36 Mar. 1-14-----14 1,410 341 15,500 148 3,490 24,700 45,500 63.9 44.7 4,920 4,800 87 56,900 1.032 Mar. 15-29-----.41 12 1 440 352 15 600 159 3,520 24.900 45.900 64.5 50.8 5,040 4,910 87 95 57 000 8.0 1.033 Mar. 30-31-----.60 24 1,570 556 36.100 90 3.510 57,400 --99,200 145 161 6,200 6,130 93 199 101,000 1.072 4,950 Apr. 1-7, 9-18----5.78 11 1.400 18.300 I 129 381 3.350 29.600 53.100 75.0 829 5.060 89 112 54 900 1 038 --Apr. 8-----49.0 188 12,400 1,620 86 19.800 48.5 4.600 2.620 2.550 106 46.300 7.5 1.024 --34.800 91 Apr. 19-20-----17.0 510 5.980 1.660 1.210 9.500 --17.400 23.9 799 1.740 88 62 26.000 7.8 1.011 Apr. 21-30-----.59 326 97 9.7 1.310 15,200 3.210 24,200 4.490 55.500 44.300 62.1 70.6 4,610 7.4 1.031 --May 1-4----18.0 290 1.190 19,700 2.740 31,300 --55.300 78.1 2.690 4.160 4.090 91 133 64,500 7.2 1.039 May 3-8. Il-----14 4,200 86.6 546 111 1,340 6,580 --12,900 3,020 1,770 1,670 19,300 7.6 1 007 17.7 May 9-10, 15, 19-20---31.4 16 339 70 2,170 134 881 3,420 --6.960 9.48 1,130 1,020 28 11,000 7.6 .002 May 12-14, 16-18, 21-22 12.1 13 711 170 5,760 109 1,770 20,300 28.0 2,380 59 28,400 7.4 10.800 2.470 1.013 May 23-26-----1.70 9.6 1.190 371 21 900 112 2,650 35,000 4,400 142 69,800 61.200 86.8 281 4.490 91 May 27-31-----1.78 17 1.090 302 12.900 1.71 2,560 20,700 --37,700 3,960 3,820 88 89 47,800 7.5 1.026 52.6 181 2,580 June 1-2----124 22 1 150 328 123 4,120 123 18 400 29.400 --51,900 73.2 17.380 4.220 90 63.300 7.2 1.037 June 3-4. 10-11-----4.003 19 292 52 1,540 127 734 2,430 5,130 6.98 55,450 942 838 78 22 8.160 8.0 ---27 June 5-9----- 1.555 16 182 544 118 479 970 2.0 2.380 3.24 9,990 565 468 12 3 900 7.8 June 12-20-----51.4 19 590 147 4,230 6,800 114 1,530 --13,400 18.4 1,860 2,080 1.980 82 40 19 900 1.008 June 21-22-----79 0 --32,600 June 23-----1,740 16 430 50 2,830 113 1,110 8,870 41,670 1,190 83 34 13,700 7.8 4,380 --12.1 1,280 1.004 June 24-28, July 2-7, 13-16-----728 142 680 119 3,950 7.9 26 373 1.030 2.0 2,330 3.17 462 364 14 June 29-30, July 1----353 60 1,690 5,340 1,020 23 7.8 310 2.680 5,600 918 78 8.910 124 784 --7.62 --July 8-12, 17-----214 14 315 50 1.650 123 780 2.600 --5.470 7.44 3.160 890 78 23 8,750 7.4 992 --July 18, 21-22----237 450 64 1,120 9.19 1,390 1,300 23 23 1.950 109 3.100 6.760 4.330 75 10.200 7.7 ---July 19-20-----278 23 325 28 7.7 1.070 3.0 4.07 2.240 926 62 9.8 4.490 688 74 816 2.990 866 July 23-31-----12.7 15 752 174 5,380 105 1,970 23.4 2,590 2,510 82 46 23,500 7.3 1.011 8.610 --17,000 583 Aug. 1-4----1.60 15 154 7,140 111 2,100 11,400 --21,700 29.9 93 2,820 2,730 85 58 29,000 1.012 Aug. 5-7----.43 24 1,190 252 11,900 97 2,930 18,900 35,200 49.0 40.9 4,000 3,930 82 42,900 7.6 1.024 Aug. 8-12-----643 22 123 3.5 2.90 3,730 339 13 3,530 8.2 362 910 2.130 --Aug. 13-14, 22-23----40.2 230 44 1,220 1,870 1.0 4,080 5.55 755 663 19 5,540 112 1,200 Aug. 15-21, 24-25----20.0 454 82 2,410 108 3,810 8,020 10.9 433 1.470 1,380 78 12,000 7.3 1.003 Aug. 26-31, Sept. 1-3--2.29 16 834 193 6,170 99 2,070 9.970 19.300 26.6 119 2.870 2,790 32 50 .400 7.5 1.013 Sept. 4-15-----.32 21 ,450 334 16,100 121 3,550 25.700 --47.200 66.3 40.8 4,990 4,890 88 99 57,500 6.4 1.033 Sept. 15-36-----.780 11,600 2,990 19,800 36,600 151 5.860 5.730 46,600 1.025 Weighted average----5,020 6.83 1,710 850 750 7,700

Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads.

825. BRAZOS RIVER AT SEYMOUR, TEX.

LOCATION, --At gaging station at bridge on U. S. Highways 277 and 283, three-quarters of a mile upstream from Wichita Valley Railway bridge, I mile southwest of Courthouse in Sevenur, Baylor County, and at mile 812.
DARIMGEAREA.--L-409 square miles, approximately, of which 9,240 square miles is probably noncontributing.
Make temperatures: August to September 1959.
Which temperatures: August to September 1959.
Which temperatures: August to September 1959.
Which temperatures are an expectation of August and September 1959.
Which the September 1959 struct in Wascert 1959.

	Mean	į		Cal-	Mag-	S	Po-	Bicar-	Sul-	Chlo-	Fluo	ž	Bo-	Dise (ca	Dissolved solids (calculated)	ids)	Har as C	Hardness as CaCO,	Per-	So-	
Date of collection	dis- charge (cfs)	(SiO,)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	(NO,)	(B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal. cium, magne- sium	Non- carbon-	so- dium	adsorp- tion ratio	
Aug. 1-8. 1939	34.9	22		495	76	1,83	01	99	1,460	2,850	;	1		6,780	9.22	639	1,620	1.570	7.1	0.7	-
Aug. 9. 22-25	136	11		007	67	1,50	00	102	1,090	2,350	;	1		5,470	7.44	2,010	1,270	1.190	7.2	1.8	
Aug. 10-11. 19-21	655	91		295	42	93	30	101	822	015.1	8.0	2.0		3,570	48.4	6,310	908	826	69	1.3	
Aug. 12-18	330	13		189	24	48	35	92	536	700	. 7	2.5		2,000	2.72	1,780	570	767	6.3	90.00	
Aug. 26-31	17.4	1.4		622	103	2.67	02	16	1,670	4,230	:	:		9,360	12.8	055	1,980	1.900	7.5	26	
Sept. 1-2. 4-15		1.2		595	83	1,900	00	101	1,370	2,920	;	1		6,800	9.25	74.5	1,500	1 420	7.3	7.7	
Sept. 3	17.0	11		214	3.7	83	3.7	72	614	1,280	7.	2.5		3,030	4.12	139		627	7.3	77	
Sept. 16-30	0	13		533	96	2,00	00	120	1,550	3,090	-	:		7,340	0.01	-		1,630	7.2	7.1	

Hd

Specific conduct-ance (micro-mhos at 25° C)

9.830 8.210 5.450 3.150 13.400

9,970

RDATOS DIVER RASIN - Continued

865. HUBBARD CREEK NEAR BRECKENRIDGE. TEX.

LOCATION.--At gaging station at bridge on U. S. Highway 183, 2.3 miles downstream from Big Sandy Creek, 6.8 miles northwest of Breckenridge, Stephens County, 7 miles upstream from Conzales Creek, and 8 miles upstream from Clear Fork Brazos River.

DRAINAGE AREA, -- 1,087 square miles.

RECORDS AVAILABLE. -- Chemical analyses: April 1955 to September 1959.

Water temperatures: April 1955 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 2,420 ppm Apr. 16-30; minimum, 143 ppm July 16.

Hardness: Maximum, 1,140 ppm Apr. 16-30; minimum, 80 ppm July 16.

Hardness: maximum, 1,140 ppm Apr. 10-30, minimum, 300 ppm July 10.

Specific conductance: Maximum daily, 3,900 micromhos May 4; minimum daily, 254 micromhos July 16.

EXTREMES. 1955-9,--Dissolved solids: Maximum, 3.100 ppm June 13, 1958; minimum, 118 ppm Feb. 6-8, 1957.

Hardness: Maximum, 1,140 ppm Apr. 16-30, 1959; minimum, 72 ppm Feb. 6-8, 1957.

Specific conductance: Maximum daily, 5,600 micromhos June 13, 1958; minimum daily, 121 micromhos Apr. 27, 1957.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

Chemical analyses, in parts per million, water year October 1958 to September 1959 Hardness Dissolved solids Specific as CaCO. Monn Mag-(calculated) Per conduct-Cal So Ricar. Sul Chlo-Fluo-Ni-Rodium C:1:-dis-Ivon tascent ance nH Date of collection cium dium bonate fate ride ride Parts adsorn trate ron Tons charge (SiO₂) (Fe) *inm Tons (micro-(Ca) (Na) (HCO₁) (SO,) (CI) (F) (NO.) (B) cium tion (cfs) (Mg) (K) carbondium mhos at milacre magne ratio 25° C) day ate lion foot sium Oct. 1-12, 1958-----2.39 9.0 15 153 198 0.1 2.0 0.73 3.46 236 50 3.0 985 8.1 110 Oct. 13-27----1.23 124 22 146 193 138 1.13 2.75 400 44 1,480 8.0 292 4.0 829 242 3.2 Oct. 28-31 Nov. 1-16a .10 171 38 172 170 319 340 .2 6.2 1,140 1.55 .31 583 444 39 1.940 7.8 Nov. 17-30----a0 6.4 201 44 193 224 374 370 1,310 1.78 682 499 38 3.2 2,150 7.9 9.6 Dec. 1-15-----6.8 208 45 1 76 236 370 355 .2 8.1 1,290 1.75 704 510 35 2.9 2,180 7.9 Dec. 16-31-----20 7.8 192 41 209 194 358 400 1,310 1.78 --61.9 488 3.6 2,160 7 9 8.2 Jan. 1-15, 1959-----5.5 200 52 195 5.8 223 366 418 .2 8.5 1,360 1.85 713 530 37 3.2 2,250 7.8 Jan. 16-31-----2.05 8.6 255 51 237 279 408 495 ---13 1,600 2.18 8.86 846 617 38 3.6 2,610 7.7 .31 Feb. 1-14-----9 9 230 60 1.40 7 9 262 1/17 4.90 528 16 1.670 2.27 820 700 4.1 4.0 2.670 Feb. 15-28-----.68 6.4 262 61 303 209 412 675 .4 12 1.830 2.49 3 36 904 733 42 4.4 3,030 7.9 Mar. 1-17----a .25 71 379 3.01 1.49 1 050 3.550 6.2 305 211 514 820 15 2.210 880 5.1 Mar. 18-31----a0 288 72 388 .4 45 7.5 608 2,230 3.03 916 3.500 7.7 121 790 15 --1.010 5.3 Apr. 1-15----310 77 381 151 660 810 11 2,340 3.18 1,090 966 43 5.0 3,690 7.6 5.6 Apr. 16-30----325 81 144 702 840 6.8 2,420 3.29 ,140 1,030 5.0 3,780 7.9 May 1-8----aO 298 76 438 631 900 .3 5.4 2,400 3.26 ,060 979 5.9 3,810 7.5 May 9-11, 22-23----- 1,291 8.8 46 44 97 95 .2 4.5 270 .37 941 40 1.6 538 7.5 May 12-21, 24-26----45.2 8.4 58 8.6 75 98 164 3.0 392 .53 47.8 180 100 47 2.4 774 7.3 May 27-31, June 1-----5.43 7.6 89 15 1.09 107 100 230 .3 2.8 607 .83 8.90 284 196 45 2.8 1,140 7.1 June 2-8----810 9 9 1.1. 1.1. 7.8 14 102 3.0 270 .37 590 142 65 7.0 7.1 June 9-20----7.48 1/4 42 18 117 152 58 252 .2 3.8 640 .87 12.9 304 179 46 2.9 1.200 7.9 Tune 21-24-----229 1.680 124 1.9 7.7 25 185 171 101 402 3.8 938 1.28 580 412 272 4 0 June 25-26-----145 10 40 9 8 58 81 1.05 20 17 178 .2 4.0 413 .56 162 186 100 2.6 805 7.5 June 27-30, July 1-3---43 40 243 .34 133 39 464 11 6 2 112 76 3 2 0 250 166 41 1 5 7.7 July 4-15-----54 139 50 24.0 9.8 70 116 27 368 23 8 170 47 702 7.1 8 8 . 3 2.2 76 2 3 July 16-----28 251 6.8 2.5 20 79 12 31 .1 3.5 143 19 96 9 80 15 35 1.0 254 7.6 July 17, Aug. 2-9----16.5 9.8 84 285 276 53 1.220 7 8 16 142 132 67 672 168 3.7 . 5 2 8 91 29 9 July 18-31-----55.3 12 42 8.3 48 103 22 94 4 280 38 41.8 139 43 1.8 517 7.5 2.2 Aug. 1, 16-20-----1.20 11 72 15 94 155 73 170 1.0 ь533 .72 1.73 241 114 2.6 894 7.7 . 5 Aug. 10-15-----11.6 11 57 11 69 143 1.0 385 .52 12.1 187 92 2.2 710 7.6 116 36 -4 Aug. 21-31-----92 20 129 .5 .92 187 43 1,110 7.5 a0 7.6 108 152 202 .8 ь677 312 2.7 Sept. 1-30----a4.00 108 142 153 126 278 ь839 9.06 352 226 1.370 7.6 Weighted average----47.9 56 104 24 121 42.0 162 76 628

b Residue on evaporation at 180°C.

a Includes days of less than 0.05 cubic feet per second discharge.

881. SALT CREEK AT OLNEY, TEX.

LOCATION .-- At gaging station at bridge on State Highway 199, 0.5 mile east of Olney, Young County.

DRAINAGE AREA .-- 9.6 square miles.

DRAINAGE AREA.--9.6 square miles.

RECORDS AVAILABLE.--Chemical analyses: April 1958 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 3,670 ppm Apr. 23-26; minimum, 101 ppm Sept. 3.

Hardness: Maximum, 962 ppm June 27-30, July 1-8; minimum, 69 ppm Sept. 3.

Specific conductance: Maximum daily, 7,980 micromhos Apr. 26; minimum daily, 182 micromhos Sept. 3.

EXTREMES, April 1958 - September 1959.--Dissolved solids: Maximum, 19,300 ppm July 4-5, 1958; minimum, 101 ppm Sept. 3, 1959.

Hardness: Maximum, 4,040 ppm July 4-5, 1958; minimum, 69 ppm Sept. 3, 1959.

Specific conductance: Maximum daily, 30,400 micromhos July 5, 1958; minimum daily, 182 micromhos Sept. 3, 1959.

RENARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean dis-	631	Iron	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved so		Hard as Co	inesz zCO;	Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	Silica (SiO _z)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	micro- mhos at 25°C)	рН
Oct. 1-7, 1958 Oct. 9-10, 18, 26, 29 Oct. 11, 19-24 Oct. 12-17 Oct. 27-28, 30-31,	a0.01 0 a .03 a .03	5.6 4.8 6.4 6.4		50 57 28 31	12 16 8.6 5.7	21 22 13 7	8 2	107 104 108 96	12 10 6.2 5.4	388 430 210 120	0.4 .2 .3 .2	1.0 1.2 1.5 1.8		740 798 6484 289	1.01 1.09 .66 .39	0.02 .04 .02	174 208 106 101	87 123 17 22	73 70 73 60	7.2 6.8 5.6 3.1	1.440 1.560 881 560	7.8 7.9 7.5 7.5
Nov. 1-4	0 a .08 0	2.1 4.6 2.8		165 173 37	37 41 7.7	58 94 11	3	59 70 96	27 59 10	1,240 1,790 202	.2 .5 .3	.8 6.5 2.0		2,080 3,050 b447	2.83 4.15 .61	.66	564 600 124	51.5 542 46	69 77 67	11 17 4.5	3,970 5,600 833	7.2 7.1 7.6
Dec. 1-2 Dec. 7-12, 15-16 Dec. 14, 17-22 Dec. 29-31, Jan. 1-2,	a .05 0 0	3.9 3.6 2.8		24 32 79	3.5 7.5 19	3 14 32	9	66 120 85	6.4 10 17	63 230 625	.2	2.5 1.5 1.2		ь187 ь527 1,110	.25 .72 1.51	.03	74 111 275	20 13 206	51 74 72	1.8 6.2 8.4	336 965 2,160	7.3 8.2 7.9
1959 Jan. 7-15 Jan. 16-17, 19-20 Jan. 18, 21-31	a .04 0 0 a .01	6.1 2.5 1.8 3.5		31 27 77 40	4.5 6.7 20 11	96 25 13	2.5	94 98 84 137	86 8.8 16 14	60 156 528 224	.2 .3 .3	3.0 1.5 .8 1.2		195 6374 941 6530	.27 .51 1.28 .72	.02	96 95 274 145	19 14 205 32	45 68 67 67	1.6 4.3 6.7 5.0	378 690 1,850 965	8.2 8.1 7.9 8.2
Feb. 1, 4-8, 10-14 Feb. 17-18 Feb. 15-16, 20 Mar. 28-30	0 0 0 a .07	2.3 3.3 2.1 6.3		36 100 38 38	10 32 13 7.3	12 34 15 8	4 8	136 154 121 102	17 26 21 18	189 690 262 140	.5 .4 .5	1.8 2.8 1.5 3.5		b468 1,270 b611 345	.64 1.73 .83 .47	.07	131 381 148 125	20 255 50 42	67 66 70 59	4.7 7.7 5.7 3.2	855 2,430 1,090 677	8.1 7.4 7.7 7.5
Apr. 1-3	0 0 a .20 0 .90 0 a2.42 a .23 0	7.0 6.4 6.0 3.9 6.4 6.7 6.5 7.4 4.5 6.6		48 110 77 194 42 37 168 50 132 30 26	13 24 16 56 4.0 6.4 39 11 30 3.7 4.8	71 44 1,14 3 13 77 27 68 3	0 0 1 5 0 5 2 8	136 48 51 85 55 130 105 56 82 74 102	31 37 25 61 9.8 12 38 17 25 8.0	288 1,030 1,310 790 2,190 50 221 1,530 482 1,310 56 120	.3 1.0 .7 .6 .1 .3 .5 .4 .6 .3	1.0 2.0 3.0 1.0 1.8 11 3.0 2.0 2.0 2.5		635 2,230 1,400 3,670 208 472 2,590 886 2,220 b210 b339	.86 3.03 1.90 4.99 .28 .64 3.52 1.20 3.02 .29	1.20 .51 5.79 1.38	174 420 373 258 714 121 119 580 170 453 90 84	62 380 331 188 670 15 33 534 103 392 6	68 81 79 78 36 71 74 78 77 48 70	5.8 	1,230 3,290 4,150 2,650 6,670 404 931 4,810 1,770 4,190 368 605	6.8 7.4 7.0 6.9 7.0 7.6 7.1 7.0 7.3 7.2 6.9 7.0
June 1, 4-5 June 6-20 June 21, 26 June 22-25 June 27-30, July 1-8 July 9-16 July 17-18 July 19-22	a .23 0 1.35 20.6 a .02 a .24 0 a .02	7.8 7.2 13 5.5 5.0 5.8 9.0 8.4		142 138 80 33 280 120 104 76	36 34 16 6.0 64 28 36	93 76 22 5 9 479 52 34	5 7 9 1 7.4	83 53 82 100 55 102 65 65	40 27 17 6.8 39 22 30 7.6	1,710 1,470 475 102 2,010 960 1,030 655	.6 .5 .4 .3 .5 .5 .5	6.0 3.0 4.5 1.0 2.5 2.5 3.0		2,910 2,470 873 263 3,330 1,680 1,760 1,140	3.96 3.36 1.19 .36 4.53 2.28 2.39 1.55	1.81 3.18 14.6 .18 1.09	502 484 266 107 962 414 408 230	434 441 198 25 916 331 354 177	80 77 65 54 67 71 74	18 15 6.1 2.5 13 10 11	5,230 4,570 1,720 513 6,090 3,170 3,340 2,210	6.9 7.6 7.6 6.8 7.1 7.3
Aug. 30-31, Sept. 1-2 Sept. 3	a .22 20.0 0 a .46	8.8 6.0 9.8 7.2		103 25 34 70	22 1.7 5.5 15	61 16 48	9.8 3	69 84 112 72	34 2.6 13 29	1,120 12 250 850	.9 .1 .6	6.0 2.5 2.8 3.0		1,940 101 5558 1,500	2.64 .14 .76 2.04	1.15 5.45 1.86	348 69 108 236	291 1 16 177	79 23 77 82	14 .5 6.8 14	3,620 182 1,020 2,810	7.0 7.7 7.3 7.2
Weighted average		6.0		41	7.7	12	.5	94	9.8	225	0.3	1.7		463	0.63	0.45	134	57	67	4.7	890	

a Includes days of less than 0.05 cubic feet per second discharge.

Residue on evaporation at 180°C.

c Represents 100 percent of flow for the water year. No flow on many days.

882. SALT CREEK NEAR NEWCASTLE. TEX.

LOCATION. -- At gaging station at county bridge, 1.0 mile upstream from Oak Creek, 2.0 miles upstream from State Highway 24 bridge, 5.0 miles east of Newcastle, Young County, and about 8.5 miles upstream from Salt Creek Reservoir Dam.

DRAINAGE AREA. -- 57.9 square miles.

DRAINAGE AREA.--57.9 square miles.

RECORDS AVAILABLE.--Chemical analyses: April 1958 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 2,170 ppm Apr. 14-16; minimum, 51 ppm July 18-19.

Hardness: Maximum, 661 ppm Apr. 14-16; minimum, 22 ppm July 18-19.

Specific conductance: Maximum daily, 3,940 micromhos Apr. 14; minimum daily, 72 micromhos July 19.

EXTREMES, April 1958 to September 1959.--Dissolved solids: Maximum, 4,350 ppm June 21-30, July 1-5, 1958; minimum, 51 ppm July 18-19, 1959.

Hardness: Maximum, 1,230 ppm June 21-30, July 1-5, 1958; minimum, 22 ppm July 18-19, 1959.

Specific conductance: Maximum daily, 11,000 micromhos June 24, 1958; minimum daily, 72 micromhos July 19, 1959.

REMARNS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean	a		Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved sol	0000996	Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25°C)	pН
Oct. 1-11, 1958 Oct. 12 Oct. 13-31 Nov. 1-15 Nov. 15-30	a0 2.20 a.01 a0 a0	5.0 6.6 3.8 3.2 2.5		60 122 72 70 70	12 22 15 15 15	13 33 19 21 21	2 5 8	118 94 100 87 92	12 22 16 15 14	270 720 400 440 440	0.3 .3 .3 .4	1.5 3.0 1.0 .8		554 1,270 752 b874 b884	0.75 1.73 1.02 1.19 1.20	7.54	199 396 241 236 236	102 319 159 164 160	60 65 64 67 67	4.1 7.3 5.5 6.2 6.2	1,100 2,470 1,480 1,580 1,570	7.9 8.0 7.9 7.6 7.5
Dec. 1-13	a0 a0 a0 a0 a0 a0	2.1 5.1 3.7 7.8 5.7 3.5		74 92 85 152 62 113	18 22 22 37 16 28	22 26 232 42 15 28	6 9.3 7 9	82 142 120 c190 88 168	17 21 20 42 14 17	468 538 495 890 340 615	.5 .3 .4 .2 .3	2.0 1.0 1.0 3.5 .8 1.0		847 1,020 927 1,650 641 1,150	1.15 1.39 1.26 2.24 .87 1.56	 	258 320 302 531 220 397	192 204 204 375 148 260	65 64 62 64 61 61	6.1 6.5 5.8 8.1 4.7 6.3	1,680 1,980 1,820 3,090 1,290 2,220	7.6 7.7 8.0 8.6 8.2 8.0
Feb. 1-10	a0 a0 a0 a0	7.4 5.6 4.0 6.3 6.4 4.1		90 82 98 90 82 120	22 22 26 25 21 30	27 28 28 33 21 38	3 7 5 6	131 132 156 108 106 79	22 21 15 32 23 29	552 552 588 660 458 820	.3 .4 .5 .3 .3	1.5 .5 .5 2.2 2.0 7.0		1,030 1,030 1,100 1,200 861 1,430	1.40 1.40 1.50 1.63 1.17	::	315 295 352 328 291 423	208 187 224 239 204 358	65 68 64 69 62 66	6.7 7.2 6.7 8.0 5.5 8.1	2,010 2,010 2,150 2,330 1,700 2,710	8.1 8.0 7.6 7.9 8.1 7.5
Apr. 1-10, 18	a0 a0 a0 a0 a0 a0 a0 a37.7 3.38			37 52 194 54 96 123 18 48 64	6.8 10 43 9.7 22 27 3.0 8.4	9 56 2 11 29 39	4 6 4 1 7	63 100 56 38 100 81 59 62 100 139	17 22 95 6.8 28 51 65 8.0	133 194 1,240 36 222 600 800 38 218 320	.2 .3 .5 .3 .5 .6 .5 .3 .4	4.5 3.0 5.2 2.5 3.0 27 3.2 5.7 1.5		300 432 2,170 486 1,110 1,470 137 472 661	.41 .59 2.95 .66 1.51 2.00 .19 .64	13.9 4.31	120 170 661 42 174 330 418 57 154 213	69 88 615 11 92 264 370 6 72 99	54 55 65 55 59 66 67 51 62 64	2.6 3.2 9.6 1.6 3.8 7.0 8.3 1.6 4.1	598 860 3,940 193 962 2,110 2,810 262 942 1,320	6.9 7.8 7.5 7.4 7.0 6.6 7.1 6.6 7.3
June 1-21	30.1 156 13.9 a1.78 2.90 a1.75 a1.94	14 14 11 13		52 13 42 32 36 20 46 34 5.4	12 3.1 7.4 5.7 7.5 5.0 9.5 7.0 2.1 4.3	10 5 6 4 11	9 3 2 7 2	106 43 82 84 88 71 83 82 26 63	11 4.6 14 7.6 9.8 7.6 12 9.6 3.6	310 32 194 97 130 65 229 114 5.0	.5 .3 .3 .2 .3 .2 .2 .2	2.0 1.5 4.0 2.2 1.8 3.8 2.8 1.8 3.2 2.8		608 103 418 249 309 193 470 276 51 151	.83 .14 .57 .34 .42 .26 .64 .38 .07	8.37 176 9.34 1.49 1.51 2.22 1.45 23.4 1.37	179 45 136 103 121 71 154 114 22 73	92 10 68 34 49 13 86 46 1	67 48 62 52 55 56 62 53 37 44	5.4 1.3 3.8 2.2 2.7 2.2 4.1 2.4 .5	1,220 190 797 482 578 336 889 520 72 277	6.9 6.6 7.4 7.2 7.5 7.4 7.5 7.3 7.0 6.7
Aug. 1-10	a0 a0 a0 a34.3 a3.72	6.1		33 37 48 7.5 14 29 38	6.3 6.8 8.3 3.5 3.4 5.0 6.8	5 7 1 2 4	1 3 8 3 1 1 6	111 108 103 38 53 90 126	12 17 27 6.2 7.4 7.6 10	65 88 138 14 28 70 91	.4 .6 .6 .2 .2 .2 .2 .3	2.5 4.0 18 4.1 2.9 2.6 1.9		b244 b290 381 75 113 211 b291	.33 .39 .52 .10 .15 .29 .40	10.5	108 120 154 33 49 93 123	17 32 70 2 6 19 20	45 49 52 46 48 49 50	1.7 2.1 2.7 1.0 1.3 1.8 2.2	408 495 707 126 197 394 517	7.6 7.3 7.9 7.4 7.6 7.4 7.7

a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at $180\,^{\circ}\text{C}_{\star}$

c Includes equivalent of 12 parts per million of carbonate (CO3).

886. BRAZOS RIVER AT POSSUM KINGDOM DAM NEAR GRAFORD, TEX.

LOCATION. -- Immediately below Possum Kingdom Dam, 2.6 miles upstream from Loving Creek, 11.3 miles southwest of Graford, Palo Pinto County, and 20 miles upstream from gaging station

DRAINAGE AREA, --22,550 square miles, approximately, of which 9,240 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: January 1942 to September 1959.

Water temperatures: October 1949 to September 1955.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 1,370 ppm Sept. 1-30; minimum, 996 ppm Mar. 1-31.

EXTREMES, 1958-59,--Dissolved solids: Maximum, 1,370 ppm Sept. 1-30; minimum, 296 ppm Mar. 1-31.

Hardness: Maximum, 425 ppm Sept. 1-30; minimum, 228 ppm Dec. 1-31.

Specific conductance: Maximum daily, 2,350 micromhos Sept. 29; minimum daily, 1,730 micromhos June 4.

EXTREMES, 1942-59,--Dissolved solids: Maximum, 2,640 ppm Jan. 1-31, 1956; minimum, 331 ppm Apr. 26-30, May 1-10, 1957.

Hardness: Maximum, 828 ppm Jan. 1-31, 1956; minimum, 135 ppm Apr. 26-30, May 1-10, 1957.

Specific conductance: Maximum daily, 5,720 micromhos Jan. 7, 1956; minimum daily, 494 micromhos May 4, 1957.

Water temperatures (1949-55): Maximum, 76°F Sept. 27-30, 1950; minimum, 45°F on several days in February 1951.

WEMPARKS,--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for gaging station near Palo Pinto for water year October 1958 to September 1959 given in Water-Supply Paper 1632. No appreciable inflow between dam and gaging station except during periods of heavy local rains.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	1000	ssolved so			iness αCO ₁	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₁)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-31, 1958 Nov. 1-30	658 352	10 7.8		122 110	20 19		76 49	122 119	234 211	455 408		1.5		1,180 1,060	1.60	2,100 1,010	386 352	286 255	61 61	6.1 5.8	2,040 1,900	7.7 7.8
Dec. 1-31 Jan. 1-31, 1959	196 217	8.8		102 103	18 19		38	115 118	191 197	392 382		.8		1,010	1.37 1.36	534 586	328 335	234 238	61 60	5.7 5.5	1,770 1,770	7.3 7.8
Feb. 1-28 Mar. 1-31		7.6 10		104 104	19 19		32 29	118 114	198 195	382 382		.5 l.0		1,000 996	1.36 1.35	209 183	338 338	241 244	60 60	5.5 5.4	1,780 1,780	7.9 7.7
Apr. 1-30 May 1-31		8.8 7.8		105 104	20 17	233	7.1	119 119	195 203	392 380		.8 1.0		1,020 1,010	1.39	214 633	344 330	246 232	59 61	5.5 5.7	1,780 1,790	7.4 7.5
June 1-30 July 1-31		8.6 9.0		110 118	20 22		40 177	124 126	215 256	392 438		.5		1,050 1,180	1.43	3,010 6,630	356 385	255 282	59 61	5.5 6.1	1,840 1,990	7.4
Aug. 1-31 Sept. 1-30	225 208	12 12		125 134	22 22		192 12.7	128 125	264 294	465 515		1.2		1,240 1,370	1.69	753 769	402 425	298 322	61 63	6.3	2,120 2,310	7.2
Weighted average	458	9.2		115	21	2	164	123	235	425		0.9		1,130	1.54	1,400	374	272	61	5.9	1,950	

926. BRAZOS RIVER AT WHITNEY DAM NEAR WHITNEY, TEX.

LOCATION. -- Immediately below Whitney Dam, 4.0 miles upstream from Iron Creek, 3.4 miles upstream from gaging station near Whitney, and 7.4 miles southwest of Whitney, LOCATION.--Immediately below whitney Dam, 4.0 miles upstream from Iron Creek, 3.4 miles upstream from gaging: Mill County.

DRAINAGE AREA.--26,170 square miles, approximately, of which 9,240 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: October 1947 to May 1948, October 1948 to September 1959.

Water temperatures: October 1947 to May 1948, October 1948 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 947 ppm Feb. 1-28; minimum, 845 ppm Aug. 1-31.

Hardness: Maximum, 328 ppm Apr. 1-30; minimum, 283 ppm Aug. 1-31.

Specific conductance: Maximum daily, 1,690 micromhos May 9; minimum daily, 1,290 micromhos July 26.

Water temperatures: Maximum, 88°F June 17; minimum, 39°F Jan. 4, 21.

EVYPDYMES 1947-59.--Dissolved dailds: Maximum. 1.500 npm Oct. 1-10. 1948; minimum, 183 ppm June 11-20, 1952.

EXTREMES, 1947-59.--Dissolved solids: Maximum, 1,560 ppm Oct. 1-10, 1948; minimum, 183 ppm June 11-20, 1952. Hardness: Maximum, 542 ppm Oct. 1-10, 1948; minimum, 96 ppm June 11-20, 1952.

Specific conductance: Maximum daily, 2,660 micromhos Oct. 1, 1948; minimum daily, 203 micromhos May 23, 1952.

Water temperatures: Maximum, 92°F July 21, 28-29, 1957; minimum, freezing point Jan 28-29, 1948.

REMARKS .-- Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. No appreciable inflow between dam and gaging station except during periods of heavy local rains.

-	Mean dis-	Silica.	Iron	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	1,00000	ssolved so			dness aCO ₃	Per-	So-	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	mhos at 25° C)	pН
Oct. 1-31, 1958 Nov. 1-30	536 571	9.6 9.8		100 94	16 16	19		126 131	174 167	318 318		1.2		885 930	1.20	1,280 1,430	316 300	212 193	57 59	4.7 5.0	1,550	7.8 8.0
Dec. 1-31 Jan. 1-31, 1959	553 530	11		94 96	16 18	191	5.8	136 133	166 173	322 322	0.3	.2		925 913	1.26	1,380 1,310	300 314	189 204	59 56	5.1 4.7	1,570 1,560	8.2 8.2
Teb. 1-28	596 612	11		93 99	18 18	19		114 134	176 178	322 325	==	.5		947 a896	1.29	1,520 1,480	306 321	212 211	58 57	4.9 4.8	1,560 1,570	7.6 7.8
Apr. 1-30 day 1-31	614 633	8.4 7.4		100 98	19 19	192	5.6	140 141	185 174	318 310	.3	.5 2.0		a898 946	1.22	1,490 1,620	328 322	213 207	56 56	4.6 - 4.6	1,600 1,560	7.9
June 1-30 July 1-31		11 11		94 86	19 17	15		140 134	170 152	308 290		1.0		909 850	1.24	1,510 3,570	312 284	198 174	57 58	4.7 4.7	1,500 1,400	7.2 7.2
Aug. 1-31 Sept. 1-30	711 625	11 11		87 89	16 17	13	77 92	137 132	138 160	290 308		2.2		845 863	1.15	1,620 1,460	283 292	170 184	58 59	4.6 4.9	1,400 1,450	7.6 7.5
Weighted average	681	10		93	17	19	91	134	165	309		1.0		893	1.21	1,640	302	192	58	4.8	1,500	

a Calculated from determined constituents.

1110. NAVASOTA RIVER NEAR BRYAN, TEX.

LOCATION. -- At gaging station at bridge on U. S. Highway 190, 2.5 miles upstream from Shepherd Creek, and 17 miles northeast of Bryan, Brazos County.

LOCATION: --At gaging station at bridge on U. S. Highway 190, 2.5 miles upstream from Shepherd Creek, and 17 miles northeast of Bryan, Brazos County.

DRAINAGE AREA. --1,439 square miles.

RECORDS AVAILABLE. --Chemical analyses: October 1958 to September 1959.

Water temperatures: October 1958 to September 1959.

Water temperatures: October 1958 to September 1959.

Hardness: Maximum, 226 ppm Sept. 20-25; minimum, 72 ppm Feb. 15.

Hardness: Maximum, 226 ppm Sept. 20-25; minimum, 27 ppm Feb. 15.

Specific conductance: Maximum daily, 2,370 micromhos Sept. 22; minimum daily, 114 micromhos Feb. 15.

Water temperatures: Maximum, 39 °F Aug. 4; minimum, 38°F Jan. 4-5.

REMARKS. --Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paner 1632. Paper 1632.

Chemical	analy	ses,	in	parts	per	million,	water	year	October	1958	to	September	1959	

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Во-		solved sol		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pН
Oct. 1-10, 1958 Oct. 11-20 Oct. 21-31 Nov. 1-16 Nov. 17 Nov. 18-30 Dec. 1-7 Dec. 8-17 Dec. 18-31	311 91.1 428 53.2 459 85.3 217 95.0 62.2	16 18 12 16 8.8 17 18 17		22 30 16 29 17 27 26 45 41	4.5 6.4 3.5 6.7 3.1 7.2 6.5 9.5 7.8	73 68 29 52 20 41 40 78		66 92 52 78 32 57 52 109 102	20 29 19 39 33 46 48 51 47	110 101 38 77 26 65 61 126 81	0.1	1.5 1.5 .5 .5 1.0 .5 .5		a299 a319 144 a282 125 232 226 a416 a315	0.41 .43 .20 .38 .17 .32 .31 .57	251 78.5 166 40.5 155 53.4 132 107 52.9	73 101 54 100 55 97 92 152 134	19 26 12 36 29 50 49 62	68 59 53 53 44 48 49 53	3.7 2.9 1.7 2.3 1.2 1.8 1.8 2.7	499 531 258 471 188 410 388 694 523	7.0 7.2 6.9 7.4 7.0 7.2 7.1 7.7
Jan. 1-10, 1959	59.6 40.5 95.1 2,241 3,400 3,825	18 20 20 18 9.6 8.2 13		28 34 38 40 16 8.4 22 38	8.2 9.8 11 12 4.1 1.5 5.2 9.0	43 56 67 73 36 13 81 181		57 58 65 62 35 25 50 74	59 69 79 85 29 14 20 37	68 90 107 120 53 14 134 302	.4 	.5 .2 .5 1.0 1.2 1.0		258 308 354 378 166 72 301 619	. 35 . 42 . 48 . 51 . 23 . 10 . 41	111 49.6 38.7 97.1 1,000 661 3,110 1,900	104 125 140 150 57 27 76 132	57 78 86 98 28 6 36 72	46 49 51 52 58 52 70 75	1.8 2.2 2.5 2.6 2.1 1.1 4.0 6.9	441 529 616 677 303 114 570 1,200	7.7 7.7 7.8 7.8 7.4 7.5 7.8 7.6
Mar. 1-7, 10-l1	258 61.0 65.6 2,524 3,212	17 13 15 16 8.4 8.8		46 34 46 49 14 21 28	12 9.5 13 15 3.6 4.6 5.7	176 93 117 106 28	4.6	79 71 85 78 33 44 76	67 54 74 88 22 26 32	282 150 195 186 42 88 99	.2	2.2 1.2 .8 .2 1.2 .5		635 390 503 503 135 224 281	.86 .53 .68 .68 .18 .30	360 272 82.8 89.1 920 1,940 724	164 124 168 184 50 71 93	100 66 99 120 23 35 31	69 62 60 55 55 62 61	5.8 3.6 3.9 3.4 1.7 2.8 3.0	1,190 718 928 908 253 422 518	7.7 7.6 7.5 7.5 6.9 7.0 7.3
May 1-8	791 3,548 2,201 592 757 122	15 12 8.6 8.8 16 14 17		34 23 12 13 27 22 37 16	9.0 5.9 3.2 3.6 6.0 4.3 8.8 3.0	72 51 22 24 53 36 59	7	83 65 41 43 79 69 98 47	49 27 14 16 28 22 44 16	113 79 30 33 85 50 91 50		1.5 1.0 1.0 1.0 2.0 1.2 2.0		334 231 111 120 284 184 a336 155	.45 .31 .15 .16 .39 .25 .46	274 493 1,060 713 454 376 111 1,470	122 82 43 47 92 73 128 52	54 28 10 12 27 16 48 14	56 58 53 52 57 52 50 59	2.9 2.5 1.5 1.5 2.6 1.8 2.3 2.1	617 439 206 228 470 335 552 285	7.8 6.9 6.6 7.1 7.4 7.5 7.4 6.7
July 1-7	45.0 88.0 240 198	17 18 15 13 16 16		22 40 46 52 46 46 36	3.9 8.7 9.6 12 7.5 9.5 8.8	39 62 77 124 188 206	3 7 4 8	81 99 114 120 99 107 103	15 44 45 48 27 30 32	51 102 128 212 315 342 211	.3 .4 	1.2 1.0 .8 .2 2.0 1.8 1.8		189 a346 a406 520 a712 a766 a518	.26 .47 .55 .71 .97 1.04	852 42.0 96.5 337 381 32.5 17.5	71 136 154 179 146 154 126	5 55 61 80 65 66 42	54 50 52 60 74 74 70	2.0 2.3 2.7 4.0 6.8 7.2 5.2	323 576 680 974 1,220 1,310 905	7.1 7.1 7.0 7.0 7.4 7.1 7.1
Sept. 1-10	- 22.4 - 17.8	15 13		36 30 66 28	9.2 6.6 15 5.7	106 86 26: 10:) 3 L	95 67 87 67	42 27 44 25	167 137 480 165	==	0.8 .8 3.8		a457 329 928 372	.62 .45 1.26 .51	53.6 19.9 44.6 40.6	128 102 226 94	50 47 154 38	64 63 72 70	4.1 3.4 7.6 4.5	786 626 1,760 709	6.9 7.3 7.3 7.1
Weighted average	- 529	12		21	4.9	5	2	5.5	2.5	80		1.1		226	0.31	323	73	28	61	2.6	414	

a Residue on evaporation at 180°C.

1140. BRAZOS RIVER AT RICHMOND TEX

LOCATION.--At gaging station at bridge on U. S. Highway 59 in Richmond, Fort Bend County, 925 feet downstream from Texas and New Orleans Railroad bridge, and at mile 93.

DRAINAGE AREA.--44,020 square miles, approximately, of which 9,240 square miles is probably noncontributing.

RECORDS AVAILABLE.--Chemical analyses: October 1945 to September 1959.

Water temperatures: November 1950 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 718 ppm Apr. 1-7; minimum, 171 ppm Apr. 11-22.

Hardness: Maximum, 288 ppm Apr. 1-7; minimum, 100 ppm Oct. 1-9.

Specific conductance: Maximum daily, 1,230 micromhos Dec. 25, Apr. 4; minimum daily, 235 micromhos Oct. 1, Apr. 20.

Water temperatures: Maximum, 86° on several days during summer months; minimum, 39°F Jan. 4.

EXTREMES, 1945-59.--Dissolved solids: Maximum, 1,400 ppm Sept. 1-10, 1951; minimum, 133 ppm Aug. 27-31, 1947.

Hardness: Maximum, 446 ppm Sept. 1-10, 1948; minimum, 74 ppm Jan. 13-14, 18-20, 1950.

Specific conductance: Maximum daily, 2,540 micromhos Sept. 4, 1951; minimum, and aliy, 187 micromhos Aug. 31, 1947.

Water temperatures (1950-59): Maximum, 91°F Aug. 5, 1951; minimum, 195°F Aug. 5, 19

					Chem	ical anai	vene (n narte n	er milli	n uatem	waar O	tobar 1	958 to	September	1050							
	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo	Ni-	Bo-	Dia	solved sol		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
Oct. 1-9, 1958 Oct. 10-14, 21-25 Oct. 15-20, 26-31 Nov. 1-10 Nov. 11-20 Nov. 21-30	7,501 2,593 2,799 2,365 2,181 2,018	14 13 14 10		33 51 73 59 64 62	4.2 8.4 14 10 13	27 48 98 61 73 72	3.9 4.8 5.0 4.8 4.6 5.3	101 145 160 158 168 158	25 47 96 66 85 72	40 73 160 90 110 114	1 1 1 1	1.5 2.0 .5 1.8 1.5		a201 330 563 402 464 454	0.27 .45 .77 .55 .63	4,070 2,310 4,250 2,570 2,730 2,470	100 162 240 188 213 200	17 42 108 58 76 70	36 38 46 41 42 43	1.2 1.6 2.7 1.9 2.2 2.2	342 556 934 671 782 754	7.8 7.4 7.6 8.0 8.0 7.9
Dec. 1-10 Dec. 11-20 Dec. 21-31 Jan. 1-10, 1959 Jan. 21-31 Jan. 21-31	1,870 1,692 1,544 1,635 1,437 1,185	10 7.0 11 8.8		80 78 87 81 77 81	16 15 16 16 16	106 95 117 98 104 107	5.0 4.9 4.9 4.8 4.7 5.9	185 191 196 215 195 214	106 100 117 99 107 111	175 150 192 149 158 166	0.3	.5 1.5 1.0 1.5 1.5		615 578 679 605 623 636	.84 .79 .92 .82 .85	3,110 2,640 2,830 2,670 2,420 2,030	266 256 283 268 258 276	114 100 122 92 98 100	46 44 47 44 46 45	2.8 2.6 3.0 2.6 2.8 2.8	1,050 982 1,160 988 1,000 1,050	7.7 7.7 7.6 8.1 8.0 8.0
Feb. 1-10	2,236 7,725 7,893 3,235 2,087 1,298	12 12 14 12		69 50 37 63 72 79	1.4 8.2 4.7 10 13 16	104 53 29 104 102 108	4.8 4.5 4.9 5.9 5.3 4.9	158 127 99 131 158 182	106 61 42 76 99 108	154 82 40 170 158 168	=======================================	1.2 2.0 2.8 2.2 2.2		546 350 a221 a509 a542 641	.74 .48 .30 .69 .74	3,300 7,300 4,710 4,450 3,050 2,250	230 158 112 198 233 263	100 54 31 90 104 114	49 41 35 52 48 47	3.0 1.8 1.2 3.2 2.9	941 594 379 919 965 1,030	8.1 8.0 7.8 7.9 8.0 7.9
Apr. 1-7	1,320 6,350 26,950 10,530 3,238 10,780 11,830	12 11 13 12 9.4		84 62 35 36 48 45	19 11 4.6 5.2 8.4 6.4 4.8	124 69 16 29 53 43	5.1 5.1 4.0 4.7 4.8 4.3 4.0	188 142 108 97 129 118 111	125 74 23 35 56 44 29	198 116 22 47 78 67 33	.3 	.5 2.5 2.0 1.8 1.0 2.0 2.5		718 a422 a171 a220 a324 a279 a200	.98 .57 .23 .30 .44 .38	2,560 7,240 12,440 6,250 2,830 8,120 6,390	288 200 106 112 154 139 112	134 83 18 32 49 42 21	48 42 24 35 42 39 31	3.2 2.1 .7 1.2 1.9 1.6 1.0	1,160 752 298 395 585 514 359	8.1 8.2 7.6 7.2 7.3 7.4 7.9
June 1-7, 13-16 June 8-12, 17-20 June 21-28 June 29-30, July 1-10 July 11-16 July 17-31	6,208 6,191 2,730 7,395 3,470 2,643	16 15 15 15		36 50 63 45 46 72	4.4 7.2 11 7.1 8.7	24 44 67 35 54 105	4.0 4.4 4.6 4.3 5.8 5.2	110 130 166 127 129 162	32 50 68 38 45 99	27 65 99 52 84 166	 	2.8 2.0 1.0 3.0 2.0		217 322 436 276 336 574	.30 .44 .59 .38 .46	3,640 5,380 3,210 5,510 3,150 4,100	108 154 202 142 151 241	18 48 66 38 46 108	32 37 41 34 43 48	1.0 1.5 2.1 1.3 1.9 2.9	341 532 716 468 566 963	7.5 7.2 7.4 7.3 7.3 7.3
Aug. 1-3, 6-10	3,806 4,905 1,431 1,419 1,683 1,310	24 15 14 15		66 48 78 70 66 62 69	12 7.6 14 14 15 13 16	91 41 117 91 110 78 89	5.4 4.1 5.3 5.0 4.8 4.4 4.6	155 147 181 189 175 173 208	81 38 93 80 89 68 77	151 62 196 146 162 122 127	 	.5 1.5 .5 .2 .8 .8		497 a298 628 524 a549 450 500	.68 .41 .85 .71 .75 .61	5,110 3,950 2,430 2,010 2,490 1,590 1,260	214 152 252 232 226 208 238	87 31 104 77 82 66 68	47 36 50 45 51 44 44	2.7 1.4 3.2 2.6 3.2 2.3 2.5	859 497 L,080 896 939 775 850	7.6 7.9 7.4 7.3 7.6 7.2 7.3
Weighted average	4,450	12		49	8.0	49	4.5	130	51	74		1.9		323	0.44	3,880	156	49	40	1.7	553	

a Calculated from determined constituents.

BRAZOS RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS

Date of collection Catago (SiO.) Jan. 26, 1959 a0.07 Jan. 29, 1959 0.25 Jan. 29, 1959 0.25 Jan. 29, 1959 0.10	(Fe)	(Ca)		So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	ž	Bo-	Dissol (cal	Dissolved solids (calculated)		Hardness as CaCO,	ž oʻ	Per-	-So-	Specific conduct-	
ल ल			sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO,)	fate (SO,)	ride (CI)	ride (F)	(NO,)	(B)	Parts per mil-	Tons T per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
8				DOUB	E MOUNTA	DOUBLE MOUNTAIN FORK BRAZOS RIVER AT US HIGHMAY 84	BRAZOS R	IVER AT U	S HIGHWA	Y 84 AT	AT JUSTICEBURG	BURG								
ru a				1,790	04	232	346	2,780							580	390			956'8	8.2
				00	BLE MOUN	DOUBLE MOUNTAIN FORK BRAZOS RIVER 10 MILES SOUTH OF CLAIREMONT	K BRAZOS	RIVER 10	MILES S	OUTH OF	CLAIREN	UNT								
				7	453	130	1,470	445						_	1,280	1,170			3,730	00
						ROUG	H CREEK	ROUGH CREEK AT MOUTH NEAR ROTAN	NEAR ROT	AN										
29, 1959				31	6.3	95	935	36							1,000	922	9		1,730	4.4
29, 1959				DOG	SLE MOUNT	DOUBLE MOUNTAIN FORK BRAZOS RIVER AT STATE HIGHWAY 70 NEAR ROTAN	BRAZOS	RIVER AT	STATE HI	GHWAY 7	D NEAR B	OTAN								
29, 1959		764	116	060'5	06	97	2,080	007'9							2,380	2,300			20,100	8.1
29, 1959				BOOR	E MOUNTA	DOUBLE MOUNTAIN FORK BRAZOS RIVER AT US HIGHMAY 380 NEAR OLD GLORY	BRAZOS R	IVER AT U	S HIGHWA	Y 380 M	EAR OLD	GLORY								
				5	529	160	1,720	595							1,610	1,480			027,2	8.0
				noa	SLE MOUNT	DOUBLE MOUNTAIN FORK BRAZOS RIVER AT STATE HIGHMAY 24 NEAR RULE	BRAZOS	RIVER AT	STATE HI	GHWAY 2	4 NEAR P	ULE								
				3	396	126	1,260	200							1,260	1,160			3,640	
				8	JBLE MOUT	DOUBLE MOUNTAIN FORK BRAZOS RIVER ABOVE SALT FORK BRAZOS RIVER	K BRAZOS	RIVER AF	OVE SALT	FORK B	RAZOS RI	VER								
		006	185	5,300	00	133	2,180	8,610							3,010	2,900			25,300	8.1
						808.	WHITE	RIVER NEAR CROSBYTON	AR CROSBY	TON										
June 18, 1959 1.25				57	11		54	22											613	
					æ	809. WHITE	RIVER	BELOW FALLS NEAR CROSBYTON	LS NEAR	CROSBYT	NO									
June 18, 1959 1.91				19	11		51	22											370	
						RED	MUD CRE	RED MUD CREEK NEAR CLAIREMONT	LAIREMON	E										
Aug. 21, 1959 0				56	7.1	42	451	30							518	454	10		1,050	1.5

MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS -- Continued

Date of collection Circle Date of collection Circle Solidar Colidar Solidar Sol	, in parts per million, water year October 1938		מסליבוויספי דיייים ווידיווים מיייים ווידיווים מיייים ווידיים ווידיים ווידיים ווידיים ווידיים ווידיים ווידיים ו	-		-	
Cota Silica Iron Cium Iron Cium Cota Cium Cota	Sul-	ž	Dissolved solids (calculated)	Hardness as CcCO,	Per-	Specific conduct-	
SALT CREEK AT ROAI - a0.15 -	fate (SO _c)	(NO ₃) (B)	Parts Tons Tons per per per mil. acre- day	Cal- Non- cium, carbon- magne- ate		(micro- mhos at 25° C)	Hd
0	T ROAD CROSSING ABOUT 5 MILES NORTHWEST OF	NORTHWEST OF CLAIREMONT	MONT				
SALT FORK B 161 162 163 164 171 167 167 168 171 171 171 171	-			5,380 5,300 6,270 6,200	96 371	143,000	7.8
1.7 642 177 1.7 642 177 1.7 5ALT FORK BRACOS 1.0 8.210 177 1.0 8.210 177 0.8 8.210 0 177 0.8 8.210 0 177 0.8 8.210 0 177 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175	SALT FORK BRAZOS RIVER AT FM ROAD 948 NEAR CLAIREMONT	948 NEAR CLAIREMONT					
SALT FORK BRAZOS 1.7				2,280 2,140		14,800	8.0
SALT FORK BRAZOS SALT F	DUCK CREEK AT MOUTH NEAR JAYTON	LJAYTON					
SALT FORK BRAZOS 1.7 542 174 SALT FORK BRAZOS 0.8 5,930 176 SALT FORK BRAZOS 0.8 5,930 176 SALT FORK BRAZOS 0.8 5,930 176 SALT FORK BRAZOS 176 SALT FOR				1,620 1,480		3,560	8.1
SALT FORK BRACOS 1.7 3.410 200 SALT FORK BRACOS SALT FORK	SALT FORK BRAZOS RIVER 5 MILES WEST OF	WEST OF JAYTON					
SALT FORK BRA 1.7 SALT FORK BRAZOS SALT FORK	-			1,570 1,430		5,050	8.1
1.0 SALT FORK BRAZOS SALT FORK BRAZOS 8,210 17 SALT FORK B SALT FORK B 4,320 176 8,100 13,100 150.5. \$ 810.5. \$	FORK BRAZOS RIVER AT US HIGHWAY 380 WEST	380 WEST OF JAYTON					
SALT FORK BRAZOS 1.0 1.0 8.210 1.1 SALT FORK BI SALT FORK BI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	-			2,220 2,050		17,000	
1.0 8,210 177	AZOS RIVER AT KENT-STONEMALL COUNTY LINE NEAR JAYTON	COUNTY LINE NEAR JA	YTON				
SALT FORK BRAZ 0.8 5,930 176 SALT FORK F 4,320 154 810.5. SHG	-			2,750 2,600		34,900	8.0
0.8 SALT FORK E SALT FORK E (4,320 176 134 100 13,100 13	DRK BRAZOS RIVER AT US HIGHWAY	Y 380 NEAR SWENSON					
SALT FORK F 4,320 154 810.5. SHC 0 13,100 811. CROTON CREEK	\vdash			2,950 2,810		27,200	8.0
0 134.00 0154 810.5. SHG 0 13,100 811. CROTON CREEK	SALT FORK BRAZOS RIVER \(\frac{1}{2} \) MILE ABOVE CROTON CREEK	OVE CROTON CREEK					
810.5. SH	-			2,970 2,840		21,400	7.9
0 13,100 18,11. CROTON CREEK	S. SHORT CROTON CREEK AT MOUTH NEAR JAYTON	UTH NEAR JAYTON					
CROTON CREEK	3,780 20,400					76,400	
	I CREEK BELOW MOUTH OF SHORT CROTON CREEK NEAR JAYTON	CROTON CREEK NEAR JA	YTON				
Aug. 15, 1959 0 2,820 3,890	2,820 3,890			3,030	65	14,200	

BRAZOS RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS--Continued

				Chi	emical a	Chemical analyses, in parts per	in parts	per mil.	tion, wat	er year C	Crober 1	958 to	Septemb	million, water year October 1958 to September 1959 Continued	ontinued							
				Cal.	Mag-		Po-	Bicar-	Sul-	Chlo-	Fluo-	ż	Bo-	Dissolv (calcu	Dissolved solids (calculated)		Hardness as CaCO,		Per-	Se-	Specific conduct-	
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)			ron (B)	Parts T per nuil- a	Tons per acre-	Tons per day	Cal- cium, magne- sium	Non- carbon- d	so- dium	adsorp- tion ratio	ance (micro- mhos at 25 ° C)	Hq
							SAL	T CROTON	CREEK AT	SALT CROTON CREEK AT FALLS NEAR ASPERMONT	AR ASPER	TNOM										
Mar. 11, 1959	0.69					92,100 10,400 5,930			3,410 1,990 1,580	147,000 16,300 9,500							9,520 2,730 2,040		9.5 8.9 8.6		150,000 38,700 25,800	
							STI	STINKING CREEK AT	EK AT US	US HIGHWAY	83	NEAR ASPERMONT	IN									
Jan. 29, 1959	a0.20					1,940	0	257	2,570	3,590							3,720	3,510			13,200	00
					BB	BRAZOS RIVER		JUST BELOW CONFLUENCE	TUENCE	OF DOUBLE	DOUBLE MOUNTAIN AND SALT FORKS	AND SA	LT FORK	S NEAR RULE	5-1							
Jan. 29, 1959	1.8					6,500	0	118	2,490	10,500							3,360	3,260			29,800	1.00
						NORTH CROTON	OTON CRE	CREEK AT COL	JNTY ROAI	COUNTY ROAD CROSSING	3 11 MILES	S SOUTHWEST	WEST OF	GUTHRIE								
Mar. 17, 1959	a0.04			1,390	312	0000,6	0	109	4,170	14,100						-	4,750	099'5	80	57	38,800	70.
							NC	NORTH CROTON CREEK	ON CREEK	AT MOUTH	NEAR KNOX	OX CITY										
Aug. 18, 1959	1.08					30	9.9	56	462	07							767	877	11		0.0.1	7.1
								BRAZOS	RIVER BEI	RIVER BELOW NORTH CROTON CREEK	CROTON C	REEK										
Jan. 29, 1959	2.1					4,520	0	111	2,040	7,280							2,660	2,570			22,100	21.00
								MUSTANG	CREEK AT	MISTANG CREEK AT MOUTH NEAR KNOX CITY	EAR KNOX	CITY										
Aug. 18, 1959	0					1,580		124	3,440	2,280							3,430	3,330	50		10,700	7.7
							BRA2	30S RIVER	AT STATI	BRAZOS RIVER AT STATE HIGHWAY 283 NEAR KNOX CITY	283 NEAF	KNOX C	ITY									
Jan. 29, 1959	2.1					3,210	0	104	1,970	5,080							2,330	2,240			16,500	8.2
								BRAZOS R	IVER AT 8	BRAZOS RIVER AT FM ROAD 209 NEAR GRAHAM	D9 NEAR C	RAHAM										
Jan. 30, 1959	7.6					1,290	o.	192	1,040	1,970							1,220	090'1			7,610	0.8
							CLEAR	FORK BRA	ZOS RIVE	CLEAR FORK BRAZOS RIVER AT STATE HIGHWAY 70 NEAR ROBY	E HICHWAN	70 NEA	R ROBY									
Jan. 30, 1959	9.0			079	126	1,770	0	242	2,210	2,450							2,120	076,1			10,300	1.00
a Field estimate.																						

BRAZOS RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS--Continued

1959Continued	
September	
to	
1958	
October	
year	
water	
s per million,	
rrts	
d u	
٠,	ŀ
nalyses	
Chemical 8	

	i			Cal-	Mag-	જ	Po-	Bicar-	Sul-	Chlo-	Fluo-	ź	Bo-	: 3	Dissolved solids (calculated)	s G	as CaCO,	8,0	Per-	So-	Specific conduct-	
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	(B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
							CLEA	R FORK BI	MAZOS RIV	CLEAR FORK BRAZOS RIVER AT FM	ROAD 57	AT SYLVESTER	VESTER									
Jan. 30, 1959	2.0					1,520	20	180	2,350	2,010							2,120	0.6,1			9,220	8.0
							CLEAR	FORK BRAZ	OS RIVER	CLEAR FORK BRAZOS RIVER AT FM ROAD 126 SOUTH OF	AD 126	SOUTH OF	F HAMLIN									
Jan. 30, 1959	2.8			210	150	76	156	200	1,930	1,250							1,890	1,730			6,680	8.0
							CLEAR	FORK BRAZ	OS RIVER	CLEAR FORK BRAZOS RIVER AT US HIGHMAY 180 NEAR LUEDERS	GHWAY 1	80 NEAR	LUEDERS									
Jan. 30, 1959				355	146	75	985	266	1,260	718							1,490	1,270			4,410	8.0
							HUBB	ARD CREEK	C AT US H	HUBBARD CREEK AI US HIGHWAY 180 NEAR BRECKENKIDGE	O NEAR	BRECKEN	RIDGE									
Jan. 30, 1959						4	665	162	115	1,300							1,000	867			4,310	7.9
								ה	KE CISCO	LAKE CISCO AT DAM NEAR CISCO	EAR CIS	00										
Mar. 12, 1959		2.2		38	3.6	4.5	4.5	128	12	0.9	0.2	0.2		1914	0.19		110	5	8	0.2	249	8.0
							BIGS	BIG SANDY CREEK	AT	US HIGHWAY 180 NEAR BRECKENRIDGE	80 NEAR	BRECKE	VRIDGE									
Jan. 30, 1959						24	245	148	09	525							392	270			2,040	8.2
								LA	CE DANIEL	LAKE DANIEL NEAR BRECKENRIDGE	CKENRID	GE										
Mar. 12, 1959		1.3		36	4.1		14	123	9.6	18	0.2	0.0		6150	0.20		107	9	22	9.0	274	7.7
						CLEAR FO	ORK BRAZ	OS RIVER	AT FM RO.	AD 701 BE	TWEEN E	LIASVILI	LE AND S	CLEAR FORK BRAZOS RIVER AT FM ROAD 701 BETWEEN ELLASVILLE AND SOUTH BEND								
Jan. 30, 1959	4.9			195	52	36	363	224	90	860							700	517			3,110	8.1
								88	883. OAK (OAK CREEK NEAR GRAHAM	R GRAHA	4										
May 12, 1959		12 16		16	4.0	3.6	10 7.3	63	12 4.0	8.0	4.0	2.5		96	0.13		95 70	т0	28	0.6	163	7.4

BRAZOS RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS--Continued

Chemical analyses, in parts per million, water year October 1958 to September 1959 -- Continued

				Cal-	Mag-	So- Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	27230	solved sol		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	Dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium tas- sium (Na) (K)	bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pН
								LAKE GR	AHAM NEAR	GRAHAM											
Oct. 9, 1958	2	5.2 3.8 2.5 2.4 2.2 1.2 1.6 2.0 2.9 2.8 2.8		58 62 63 63 64 66 67 68 64 58 54	11 12 12 14 12 12 15 15 15 15 12	93 92 93 99 101 107 106 114 114 100 92	141 148 153 156 158 162 167 160 139 126 124	13 14 14 15 15 15 17 16 15 14	186 190 190 202 200 211 215 235 240 210 192 198	0.2 .2 .4 .3 .3 .2 .2 .2 .3 .4	0.5 .5 .0 .0 .0 .2 .8 .0 .0		436 448 450 473 472 493 504 529 518 461 425 5480	0.59 .61 .61 .64 .64 .67 .69 .72 .70 .63 .58		190 204 206 214 209 214 228 231 221 198 184 189	74 82 81 86 80 81 92 100 107 94 82 86	52 50 49 50 51 52 50 52 53 52 52 52	2.9 2.8 2.8 2.9 3.0 3.2 3.0 3.3 3.3 3.1 3.0	864 889 906 921 934 954 1,000 1,030 1,070 927 842 854	8. 7. 8. 7. 7. 7.
							BARTON CE	EEK NEAR	US RIGHW	AY 80 N	EAR GORE	OON									
Apr. 21, 1959		0.7		97	51	208	146	426	242	0.2	0.0		1,100	1.50		452	332	50	4.3	1,730	7.1
								LAKE LE	ON NEAR E.	ASTLAND											
Mar. 12, 1959		3.0		48	6.6	26	137	24	46	0.2	0.1		b236	0.32		147	35	28	0.9	415	8.1
							ç	991. LEO	N RIVER N	EAR DE	LEON										
Apr. 21, 1959		9.6		119	26	165	215	78	358	0.2	0.2		862	1.17		404	228	47	3.6	1,580	7.4
							ī	BELTON RE	SERVOIR N	EAR BEL	TON										
Mar. 30, 1959		5.8	0.03	55	11	32	184	30	47	0.4	1.0		ь289	0.39		182	31	27	1.0	484	8.2
						SA	N GABRIEL I	RIVER AT	STATE HIG	HWAY 29	NEAR GI	EORGETO	WN								
May 16, 1959		6.0		62	14	13	203	28	25	0.2	11		b 276	0.38		212	46	12	0.4	451	7.0
							1100). YEGUA	CREEK NE	AR SOME	RVILLE					-					
Mar. 20, 1959	31	19		108	30	101	110	2.72	168	0.5	0.0		ь803	1.09		393	303	36	2.2	1,200	7.6
	1		-				NAVASOTA R	IVER AT S	TATE HIGH	WAY 90	NEAR NAV	ASOTA									
		14	_	42	10	90	102	55	140	0.5			b435	0.59		146	62	57		737	7.2

b Residue on evaporation at $180\,^{\circ}\text{C}$.

SAN BERNARD RIVER BASIN

MISCELLANEOUS ANALYSES OF STREAMS IN SAN BERNARD RIVER BASIN IN TEXAS

	9						Po		-	5	ī	;		ü	Dissolved solids	spi (F	Hardness as CaCO,	ico.	ď.	So.	Specific conduct-	
-	-	_	-	-	_	-		Dicar-	-inc	9000	Lino	ż	20-		מזרחומרם	()				dium		
Date of collection chai	charge (SiO ₂)	7.) (Fe)	Cium (Cam		sium (Mg)	dium (Na)	(K) Si'r E	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	ron (B)	Parts per mil-	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	Hď
							SA	N BERNAR) RIVER	SAN BERNARD RIVER AT US HIGHWAY 90 NEAR SEALY	ниах 90	NEAR SE	EALY									
Mar. 17, 1959 a5	15	5 0.30		9.0 2.	2.4	26		25	7.0	43	0.1	1.0		116	0.16		32	12	79	2.0	209	7.2
							SAN	BERNARD	RIVER AT	SAN BERNARD RIVER AI US HIGHWAY 90A AI EAST BERNARD	ANY 90A	AT EAST	BERNARD									
Apr. 25, 1959	11		11		2.8	8.6	0.5	17	5.4	14	0.2	1.2		92	0.10		39	2	35	0.7	135	5.4
							WEST	BERNARD	SIVER AT	WEST BERNARD RIVER AT STATE HIGHWAY 60 AT HUNGERFORD	GHWAY 6	O AT HUN	GERFORD									
Apr. 25, 1959	14	-	20	4.3	£.	23		107	4.4	17	0.2	0.2		136	0.18		68	0	75	1.2	244	6.3

- 72 -

COLORADO RIVER BASIN

1195. COLORADO RIVER NEAR IRA, TEX.

LOCATION .-- At gaging station at bridge on State Highway 350, 3 3/4 miles downstream from Bluff Creek, 4 miles upstream from Willow Creek, 4.5 miles southwest of Ira, Scurry County,

and at mile 825.

BRAINAGE AREA.--3,617 square miles, approximately, of which 2,590 square miles is probably noncontributing.

RECORDS AVAILABLE.--Chemical analyses: November 1958 to September 1959.

Water temperatures: November 1958 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 39,100 ppm Mar. 14-25; minimum, 255 ppm June 4-6.
Hardness: Maximum, 3,830 ppm Mar. 14-25; minimum, 102 ppm June 4-6.
Specific conductance: Maximum daily, 55,500 micromhos Mar. 25; minimum daily, 450 micromhos June 5.

Water temperatures: Maximum, 88°F Apr. 25, May 17, June 28-29; minimum, freezing point Dec. 14.

water temperatures. Indicating of a property of the second Water-Supply Paper 1632.

					Chemi	cal analy	/ses, in	parts pe	r millio	n, Novembe	er 1958	to Sept	ember 1	1959								
	Mean			Cal-	Mag.	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so		Haro as C	iness cCO;	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Nov. 1-6, 1958 Nov. 7-13, 25-30 Nov. 14-24	0.25 .42 2.35 .30 .39	1.2 3.6 3.9 2.2 3.8		465 514 387 553 568	172 169 128 186 205	6,4 4,4 7,2	220 490 450 210 380	93 105 98 153 188	1,400 1,410 1,110 1,550 1,580	9,830 10,300 7,050 11,400 11,700				18,100 18,900 13,200 21,000 21,500	24.9 26.0 18.1 28.9 29.6	12,2 21.4 83.8 17.0 22.6	1,870 1,980 1,490 2,140 2,260	1,790 1,890 1,410 2,020 2,110	88 88 87 88 88	63 63 50 68 67	27,500 28,500 20,600 31,100 32,100	7.9 7.6 7.2 7.8 7.9
Jan. 1-15, 1959 Jan. 16-31 Feb. 1-14 Feb. 15-28	.39 .39 .46	5.2 3.7 2.7 2.3		591 619 630 669	226 226 231 251	8,4	110 440 650 160	184 161 159 144	1,770 1,860 1,940 2,110	12,800 13,300 13,600 14,400				23,600 24,500 25,100 26,700	32.6 33.9 34.7 36.9	24.9 25.8 31.2 27.4	2,400 2,470 2,520 2,700	2,250 2,340 2,390 2,580	88 88 88 88	72 74 75 77	33,400 35,000 35,500 37,400	7.7 7.5 7.9 7.7
Mar. 1-13	.23 .18 3.53 .26 1.52 a .12	3.8 3.4 4.4 3.3 4.8 3.1		744 955 659 688 446 726	308 353 239 290 160 300	9,080		137 129 127 114 100 84	2,470 3,020 2,220 2,410 1,510 2,340	16,700 21,200 12,900 14,200 8,660 15,500				30,900 39,100 24,400 26,700 16,400 28,700	42.9 54.6 33.7 37.0 22.5 39.8	19.2 19.0 233 18.7 67.3 9.30	3,120 3,830 2,630 2,910 1,770 3,040	3,010 3,730 2,520 2,820 1,690 2,980	88 88 87 87 87 88	83 95 70 73 57	41,600 49,900 33,900 36,800 24,300 39,200	7.9 7.7 7.8 7.1 7.3 6.9
May 1-4, 18-23	al.12 11.0 a.44 57.2 75.7 1.05 a.10 9.49 2.48	3.7 4.9 4.8 10 12 11 7.9 7.8 8.3		523 168 293 54 34 168 269 122 199	216 59 116 11 4.1 53 91 40 77	1,4 3,4 1,3,4	100 850 870 321 53 960 260 100	80 107 93 90 108 102 96 87 101	1,560 480 889 90 27 416 701 267 546	11,300 2,900 6,110 502 69 3,100 5,200 1,780 3,760		3.0 2.8 3.0		20,700 5,510 11,300 1,040 255 5,760 9,580 3,360 7,000	28.5 7.49 15.5 1.41 .35 7.83 13.1 4.57 9.55	62.6 164 13.4 161 52.1 16.3 2.59 86.1 46.9	2,190 662 1,210 180 102 637 1,040 469 813	2,130 574 1,130 106 13 554 966 398 730	88 86 87 80 53 87 87 84 86	66 31 48 10 2.3 34 44 22 36	29,200 9,260 17,600 1,910 467 9,400 14,900 5,770 11,300	6.7 7.2 7.5 6.9 7.1 6.8 7.1 7.1
July 1-4, 15-16, 18-19- July 5-14	8.31 .74 80.0 a .78 5.84 .94	7.9 8.4 18 7.2 12		145 279 50 284 303	48 106 11 96 81	3,	520 330 300 190 180	88 87 109 89 68 45	374 718 88 716 716	2,420 5,350 452 5,120 5,100 13,400		4.8		4,560 9,830 978 9,460 9,420	6.20 13.4 1.33 12.9 12.9	102 19.6 211 19.9 149	560 1,130 170 1,100 1,090 2,360	488 1,060 80 1,030 1,030 2,330	86 79 86 86	28 4.3 10 42 42	7,710 15,400 1,790 14,800 15,000 34,100	7.2 6.9 6.8 6.8 7.6
Weighted average	b2.76	9.7		155	50	1,	670	100	406	2,640				4,990	6.79	37.2	592	510	86	30	7,650	

a Includes days of less than 0.05 rubic feet per second discharge.

b Represents 98 percent of runoff for water year October 1958 to September 1959. No flow on many days.

COLORADO RIVER BASIN--Continued

1210. COLORADO RIVER AT COLORADO CITY, TEX.

LOCATION. -- At gaging station at Colorado City, Mitchell County, 3,517 feet upstream from bridge on U. S. Highway 80, 4,100 feet upstream from Texas & Pacific Railway bridge, 1.6 miles upstream from Lone Wolf Creek, and at mile 796.

DRAINAGE AREA .-- 4,082 square miles, approximately, of which 2,590 square miles is probably noncontributing.

RECORDS AVAILABLE. --Chemical analyses: May 1946 to September 1954, November 1956 to September 1959. Water temperatures: November 1952 to September 1954, November 1956 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 19,000 ppm Apr. 1-7; minimum, 385 ppm July 2-3, 13-14.

Hardness: Maximum, 2,560 ppm Apr. 1-7; minimum, 110 ppm July 2-3, 13-14.

Specific conductance: Maximum daily, 30,500 micromhos May 1; minimum daily, 605 micromhos July 2.

Water temperatures: Maximum, 93°F June 19; minimum, freezing point Dec. 30-31, Jan. 4.

EXTREMES, 1946-54, 1956-59.--Dissolved solids: Maximum, 32,800 ppm Apr. 1-10, 1952; minimum, 176 ppm Oct. 26, 1947. Hardness: Maximum, 4,500 ppm Aug. 9-12, 1946; minimum, 65 ppm Sept. 15-20, 1949.

Specific conductance: Maximum daily, 45,800 micromhos Apr. 1-10, 1952; minimum daily, 245 micromhos May 14, 1957.
Water temperatures (1956-59): Maximum, 93°F July 30, 1957, Aug. 19, 1958, June 19, 1959; minimum, freezing point on several days during December and January.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in

Water-Supply Paper 1632.

					Chem	ical anai	yses, 1	n parts p	er millio	on, water	year o	tober 1	958 to	September	1959							
	Mean			6.1	Mag-		Po-	n.			-				ssolved so	2000	Hard as Co		Per-	So-	Specific conduct-	
8 8	dis-	Silica	Iron	Cal-	ne-	So-	tas-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	-	-	euj			cent	dium	ance	ρΗ
Date of collection	charge	(SiO ₂)	(Fe)	cium	sium	dium	sium	bonate	fate	ride	ride	trate	ron	Parts	Tons	Tons	Cal- cium,	Non-	50-	adsorp- tion	(micro-	P
	(cfs)			(Ca)	(Mg)	(Na)	(K)	(HCO ₃)	(SO,)	(CI)	(F)	(NO ₃)	(B)	mil- lion	acre- foot	per day	magne- sium	carbon- ate	dium	ratio	mhos at 25°C)	
Oct. 1-5, 1958	6.42	5.4		92	29	89	7	87	216	1,420		0.5		2,700	3.67	46.8	348	277	85	21	4,900	7.7
Oct. 6-20	3.64	3.1		153	52	1,61		82	367	2,580				4,810	6.54	47.3	596	528	85	29	8,340	7.7
Oct. 21-31	2.25	3.8		242	83	2,64		88	610	4,240				7,860	10.7	47.7	946	874	86	37	13,100	7.3
Nov. 1-20	3.01	3.6	1	294	104	3,12		92	735	5,030				9,330	12.7	75.8	1,160	1,070	85	40	15,200	7.2
Nov. 21-30	1.53	3.0		361	140	3,82		104	896	6,220				11,500	15.7	47.5	1,480	1,390	85	43	18,500	7.6
Dec. 1-15	1.01	2.3		407	158	4,47	0	128	1,090	7,200				13,400	18.4	36.5	1,660	1,560	85	48	21,000	7.6
Dec. 16-31	1.20	2.1		466	170	4.78	0	138	1,170	7,740				14,400	19.7	46.7	1,860	1,750	85	48	22,400	7.5
Jan. 1-15, 1959	1.73	3.0		496	175	5,18	0	137	1,250	8,370				15,500	21.3	72.4	1,960	1,840	85	51	23,600	7.4
Jan. 16-31	1.97	2.9		470	188	4,95	0	131	1,250	8,020				14,900	20.5	79.3	1,950	1,840	85	49	23,100	8.2
Feb. 1-13	1.81	4.1		461	184	4,84		131	1,290	7,790				14,600	20.0	71.4	1,910	1,800	85	48	22,200	7.8
Feb. 14-26	2.48	3.5		486	195	5,26		133	1,420	8,420				15,800	21.7	106	2,010	1,910	85	51	23,800	7.6
Feb. 27-28, Mar. 1-3	3.50	4.4		407	165	4,04		115	1,110	6,550				12,300	15.8	116	1,690	1,600	84	43	19,200	7.9
Mar. 4-14	1.01	4.0		515	188	5,62		124	1,490	8,960				16,800	23.1	45.8	2,060	1,960	86	54	25,200	7.7
Mar. 15-25	a .11	2.7		574	246	6,15		118	1,700	9,890				18,600	25.6	5.52	2,440	2,350	85	54	27,600	7.5
Mar. 26-31	a6.53	4.0		432 /	179	4,20	0	116	1,280	6,750				12,900	17.7	227	1,810	1,720	83	43	19,700	7.2
Apr. 1-7	2.81	4.4		598	260	6,330		87	1,680	10,100				19,000	26.2	144 269	2,560	2,490	84 85	54 46	27,300	7.3
Apr. 8-20	7.55	3.6	1	417	161	4,36		86	1,250	6,950				13,200	18.1	25.2	2,070	2,010	86	54	24,800	6.9
Apr. 21-30	a .55	4.9		505	198	5,66		75	1,550	9,010				16,700	22.9	175	2,160	2,010	85	52	24,300	6.9
May 1-4	a3.88	5.2		515	213 61	5,53 1,65		81 96	1,550	8,860 2,580				5,000	6.80	437	655	576	85	28	8,360	7.5
May 5-11	32.4	5.0		162 251	104	2,91		74	793	4,610				8,710	11.9	74.1	1,050	993	86	39	13,900	6.7
May 12-23 May 24-31	a .05	4.1		231	1.04	2,91		83	793	6,850				0,710	11.5	74.1	1,550	1,480			19,300	6.5
	1000									1340.4100.50							0.0000000	2005.000000				
June 1-3, 9-11		12		100	29	76		101	215	1,220		2.5		2,390	3.25	961	368	286	82	17	4,190	7.3
June 4		11		40	5.0	11		110	41	170		.4		437	.59	1,880	120	30	68	4.6	793	7.4
June 5-6, 8, 26-27	85.0	8.8		68	14	35		117	102	568		3.0		1,180	1.60	271	227	131	77	10	2,140	7.7
June 7, 24-25		11		44	4.9	15		112	54	225		.2		548	.75	291	130	38	72	5.9	1,000	7.4
June 12-19	2.41	11		183	61	1,75		83	430	2,840				5,320	7.24	34.6	708	640	84	29	8,860	7.0
June 20-23, 28-30	13.4	6.3		111	31	95		72	237	1,540		1.0		2,920	3.97	106	404	346	84	21	5,100	6.9
July 1,4-5		12		70	17	45		104	116	730		2.0		1,460	1.99	591	244	160	80	13	2,580	7.7
July 2-3, 13-14		13		36	5.0	9		104	34	144		2.2		385	.52	468	110	26	66	4.1	687	7.5
July 6-12		11		112	33	94		109	244	1,500		1.0		2,900	3.94	150	415	326	83	20	5,040	7.1
July 15, 17-20	93.6	9.2	1	51,	12	34		87	94	530		1.2		1,080	1.47	273	176	105	81	11	1,980	7.6
July 16, 21-31	4.06	6.0		112	35	1,06	0	74	278	1,690		1.5		3,220	4.38	35.3	424	363	85	22	5,510	7.0
Aug. 1-10		10		210	76	2,17		51	549	3,500				6,540 7,920	8.89	.18 5.13	836 974	794 928	85 85	33 37	10,400	6.9
Aug. 11-31		9.6		252	84	2,64		57	687	4,220					17.8	36.2	1,650	1,600	85	46	19,500	6.6
Sept. 1-29	al.03	9.3		140	145	4,30		60 76	1,080	6,970		.5		13,000	4.42	21.9	522	460	81	20	5,620	7.5
Sept. 30	2.50	6.0	+		42	1,03		10	293	1,700	-		-	3,230	4,42	21.7	322	400	OI	20	3,020	1.5
Weighted average	20.2	11		89	24	64	1	104	178	1,010				2,010	2.73	110	310	226	82	16	3,300	

a Includes days of less than 0.05 cubic feet per second discharge.

0 0 0 0 0

Includes days of less than 0.05 cubic feet per second discharge. Includes equivalent of 10 parts per million of carbonate (CO₂). Includes equivalent of 18 parts per million of carbonate (CO₂). Includes equivalent of 15 parts per million of carbonate (CO₂). Residue on evaporation at $180^{\circ}\mathrm{C}$.

COLORADO RIVER BASIN -- Continued

1238. BEALS CREEK NEAR WESTBROOK, TEX.

DRAINAGE AREA.--10,800 square miles, approximately, of which 7,045 square miles is probably noncontributing.

RECORDS AVAILABLE.--Chemical analyses: November 1938 to September 1939.

Water temperatures: November 1958 to September 1959.

Water temperatures: November 1958 to September 1959.

Water temperatures: November 1958 to September 1959.

Water temperatures: Naximum, 26,040 ppm Aug. 18-20, 77-28; minimum, 18-20; mini

Chemical analyses to September

May 1.3	Mar. 2-4	Jan. 6, 12-20, 1959 Jan. 21-31 Feb. 1-19 Feb. 29-27 Feb. 28, Mar. 1	Nov. 1-3, 1938	Date of collection
4.70 13.7 50.0 79.0 11.05 29.6 456 456 7.08 3.05 185 60.6		.16 a .14 .21 2.90 9.25	4.88 .10 21.0 a4.15 5.66 a .16 .34 a .17	Mean dis- charge (cfs)
9.6 8.9 12 9.4 5.7 10 7.5 9.9	4.8 4.8 4.2 4.5	3.4 3.1 4.2 7.0	3.1 6.2 7.9 7.9 1.8	Silica (SiO ₂)
				Iron (Fe)
24 79 98 52 176 170 31 58	137 137 86 200 166 44 128	146 146 148	51 28 124 66 89 120 149	Cal- cium (Ca)
7.8 50 74 118 170 9.3 36 53	134 199 74 280 225 26 133	213 217 238 238 228	26 5.9 109 42 71 112 193	Mag- ne- sium (Mg)
283 383 383 141 141 852 202 202 352 352 352	720 1,080 405 1,440 1,100 194 739	1,080 1,140 1,170 1,240 273	186 43 556 252 462 608 949	So- dium (Na)
59 55 55 55 55 55 55 55 55 55 55 55 55 5	32	73 60 60	6 8 8 8 8 6 6	Po- tas- sium (K)
230 126 138 204 126 172 232 124 142 114 116	231 186 118 5238 5238 6286 101 d204	158 152 190 174 133	99 100 83 215 127 167 153 194	So- tas- bonate fate ride ride trate ron Parts (Na) (K) (HCO.) (SO.) (CI) (F) (NO.) (B) mil. iion
47 274 372 1115 824 48 214 315 52	1,010 419 1,520 1,060 1,060 699	1,070 1,120 1,180 1,190 230	145 36 567 223 411 590 928	Sul- fate (SO ₂)
1,520 54 435 580 202 1,410 780 79 310 575 74	1,100 1,630 612 2,180 1,690 258 1,120	1,670 1,730 1,770 1,850 405	285 285 57 840 380 670 950 1,490	Chlo- ride (Cl)
	1.7	:::::	0.4 1.2 1.2	Fluo- ride (F)
2.2 7.6 11 3.0 5.0 1.5 3.7 2.5	9.8 6.0 2.5 2.5 2.0	2.0 9.7 6.5 7.0 7.2	2.5 1.5 1.5 1.5 1.5	Ni- trate (NO ₃)
				Bo-
271 1,210 1,630 602 3,530 1,460 299 e767	2,910 4,160 1,670 5,780 4,390 4,390 2,920	4,260 4,440 4,610 4,750 1,100	750 220 2,320 1,050 1,800 2,460 3,810	Parts per mil.
	3.96 5.66 2.27 7.86 5.97 1.04 3.97	5.79 6.04 6.27 6.46 1.50	1.02 .30 3.16 1.43 2.45 3.35 5.18	Dissolved solids (calculated) Tons per acre- foot
3.44 44.8 220 128 10.0 398 17.6 12.0 149	4.95 .90 7.21 39.0 5.45 3.71	1.84 1.68 2.61 37.2 27.5	9.88 12.5 '26.0 16.0 178 2.26 1.75	lids ed) Tons per day
1,190 92 .402 549 204 1,140 605 123 340 468 118 252	893 1,160 519 1,650 1,340 217 866	1,250 1,250 1,340 1,300 332	234 241 94 758 337 514 760 1,170	Cal- cium, magne- sium
1,000 0 290 382 1100 997 415 22 224 374 154	704 1,010 422 1,460 1,100 134 699	1,120 1,130 1,190 1,160 223	153 159 26 582 233 377 634 1,010	Hardness as CaCO, al. Non- gne- gne- ate
54 54 54	64 65 65 65 65	65 67 67	50 61 62 63	Per- cent so- dium
2.9 6.2 7.1 11 11 11 12.5 13 14.3	10 14 7.7 13 5.7	114	1.9 8.8 8.9 9.6	So- dium adsorp- tion ratio
6,140 479 2,120 2,800 1,100 1,100 3,170 5,550 3,170 5,550 1,600 2,510 2,510 2,510	4,740 6,540 2,800 8,490 6,760 1,360 4,640	6,720 6,910 7,100 7,250 1,940	1,380 1,370 400 3,780 1,890 2,980 4,090 6,040	Specific conduct-ance (micromhos at 25° C)
7.5 7.5 7.3 7.2 7.7 7.7 7.7 7.7	8.1.22 8.1.5	6.8 7.9 7.8	8.2 7.7 7.8 7.3 7.3 7.7	р Н

1238. BEALS CREEK NEAR WESTBROOK, TEX .-- Continued

Chemical analyses, in parts per million, November 1958 to September 1959 -- Continued

	Mean	an.		Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	1	issolved so (calculate			dness aCO ₃	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25°C)	pН
July 1, 4-8, 10, 14,																						
20-22, 1959	22.2	11		73	49	28	38	117	246	465		3.5		1,190	1.62	71.3	384	288	62	6.4	2,050	7.7
July 2, 12	164	10		24	5.9		33	96	22	37		1.5		180	.24	79.7	84	6	46	1.5	317	7.8
July 3, 23-25	21.4	6.6		117	128	55	55	142	546	950		2.0		2,370	3.22	137	818	702	60	8.4	3,970	7.0
July 9, 11	41.0	9.4		43	15	14	-1	100	81	218		1.2		e577	.78	63.9	169	87	64	4.7	1,010	7.
July 13, 17-19	467	7.3		35	12		9	97	62	1.00		1.8		e348	.47	439	137	58	52	2.6	602	7.3
July 15-16	48.0	11		159	325	1,26	0	127	1,170	2,240				5,230	7.11	678	1,730	1,630	61	13	8,060	7.6
July 26-31, Aug. 1-2	1.61	7.0		138	200	85	50	115	812	1,470		4.0		3,540	4.81	15.4	1,170	1,070	61	11	5,600	6.9
Aug. 18-20, 27-28	al.34	5.7		253	488	2,09	90	118	2,030	3,520				8,440	11.6	30.5	2,640	2,540	63	18	12,400	6.
Sept. 30	91.0	10		34	6.8	2	23	127	26	2.7		1.0		184	.25	45.2	113	9	31	.9	320	7.
Weighted average	f15.9	8.9		48	29	1.5	53	117	138	233		2.3		680	0.92	129.2	239	143	58	4.3	1,130	-

a Includes days of less than 0.05 cubic feet per second discharge.

e Residue on evaporation at 180°C.

f Represents 91 percent of runoff for water year October 1958 to September 1959. No flow on many days.

COLORADO RIVER BASIN--Continued

1239. COLORADO RIVER NEAR SILVER, TEX.

LOCATION. -- At gaging station at bridge on county road, 5.4 miles southwest of Silver, Coke County, 11 miles upstream from Pecan Creek, 16.4 miles northwest of Robert Lee, and at mile 743. DRAINAGE AREA .-- 15,479 square miles, approximately, of which 11,600 square miles is probably noncontributing. RECORDS AVAILABLE. -- Chemical analyses: October 1956 to September 1959.

Water temperatures: October 1956 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 12,800 ppm Apr. 21-30; minimum, 314 ppm June 3.

Hardness: Maximum, 2,330 ppm Apr. 21-30; minimum, 128 ppm July 2-4.

Hardness: Maximum, 2,330 ppm Apr. 21-30; minimum, 128 ppm July 2-4.

Specific conductance: Maximum daily, 20,300 micromhos May 1, 1959; minimum, 180 ppm June 1-4, 1957.

Hardness: Maximum, 88°F June 15; minimum, 12,800 ppm Apr. 21-30 1959; minimum, 180 ppm June 1-4, 1957.

Hardness: Maximum, 2,330 ppm Apr. 21-30, 1959; minimum, 93 ppm Apr. 22-30, 1957.

Specific conductance: Maximum daily, 20,300 micromhos May 1, 1959; inimum daily, 202 micromhos June 2, 1957.

Water temperatures: Maximum, 88°F May 24, June 8, 1958, June 15, 1959; inimum daily, 202 micromhos June 2, 1957.

REMARKS.--Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents EMARKS.--Values reported for alsolved solids concentrations less than 1,000 ppm are calculated from determined constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. During periods of change in tage, the concentrations of dissolved constituents are subject to wide variations, and sampling at times has not defined properly the chemical quality at this station. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids	Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pН
Oct. 1-7, 1958 Oct. 8-12 Oct. 13-14, 17-21 Oct. 15-16 Oct. 22-31, Nov. 1-10- Nov. 21-30	15.0 7.74 30.4 21.5 7.85 7.01 4.24	6.0 10 5.0 3.8		74 130 80 46 138 192 200	16 29 18 12 36 49 68	38 63 29 15 54 61	57 52 52 57	101 103 101 97 119 122 129	169 346 208 106 395 560 590	582 980 430 215 830 940 1,240	0.3 .4 .4 .6 .5 .5	2.0 1.5 2.5 1.8 2.5 .8		1,290 2,180 1,090 620 2,010 2,420 2,940	1.75 2.96 1.48 .84 2.73 3.29 4.00	52 .2 45 .6 89 .5 36 .0 42 .6 45 .8 33 .7	250 444 274 164 492 680 778	168 359 190 85 395 580 673	77 76 70 67 71 66 68	11 13 7.7 5.2 11 10	2,330 3,770 1,910 1,060 3,390 3,930 4,840	7.9 7.8 7.5 8.0 7.7 8.0 8.0
Dec. 1-10	2.00 1.52 1.84 1.64 1.86 2.05	5.6 5.0 4.6 8.2		272 322 348 395 390 420	97 86 79 82 93 98	1,09 1,26 1,13 1,210 1,23 1,40	12	136 143 158 172 108 142	852 938 936 1,070 1,080 1,140	1,730 1,980 1,800 1,950 2,000 2,260	.9	.2		4,110 4,660 4,380 4,810 4,850 5,390	5.59 6.34 5.96 6.54 6.60 7.33	22.2 19.1 21.8 21.3 24.4 29.8	1,080 1,160 1,190 1,320 1,360 1,450	966 1,040 1,060 1,180 1,270 1,330	69 70 67 66 66 68	14 16 14 14 15	6,580 7,450 6,990 7,520 7,550 8,320	8.0 7.8 7.9 8.0 8.0 8.1
Feb. 1-10	2.38 1.98 2.15 2.36 .40 a.14	5.6 7.0 7.2 7.9		435 445 455 489 557 646	99 102 109 133 150 172	1,49 1,59 2,03 2,30 2,81 3,640	00 00	150 136 123 113 118 105	1,210 1,190 1,930 1,960 1,830 1,870	2,380 2,580 2,750 3,290 4,430 5,860		=======================================		5,700 5,980 7,340 8,240 9,900 12,300	7.75 8.13 9.98 11.2 13.5 16.7	36.6 32.0 42.6 52.5 10.7 4.65	1,490 1,530 1,580 1,770 2,010 2,320	1,370 1,420 1,480 1,670 1,910 2,230	69 69 74 74 76 77	17 18 22 24 28 33	8,630 9,280 9,640 11,200 14,300 18,000	8.1 8.0 7.8 8.0 7.9 7.6
Apr. 7-20	2.78 .64 33.3 18.5 13.7 1.00	6.8 6.6 9.4 6.6		513 591 369 108 152 218 309	169 207 122 28 56 77 116	2,66 3,90 2,2: 46 9: 1,2:	00 70 88 52 70	78 82 105 89 107 87 82	1,550 1,760 1,030 247 457 686 993	4,310 6,310 3,690 760 1,500 2,010 3,090				9,250 12,800 7,540 1,660 3,180 4,310 6,500	12.6 17.5 10.3 2.26 4.32 5.86 8.87	69.4 22.1 678 82.9 118 11.6	1,980 2,330 1,420 384 610 860 1,250	1,910 2,260 1,340 312 522 789 1,180	75 78 78 73 77 76 77	26 35 26 10 17 19 24	14,000 18,200 11,500 2,890 5,350 6,980 10,200	7.0 6.9 7.0 7.9 7.3 7.5
June 3 (12 p.m12 m.)- June 3 (12 m12 p.m.), 4 (12 p.m4 p.m.), June 4 (4 p.m12 p.m.) June 5-7- June 8-15- June 16-23, 25- June 24, 26-30	694 56.0 68.8	14 16 20 14 12 12 13		108 74 52 82 132 64	26 16 11 21 37 17	59 28 12 42 69	34 16 13	154 137 193 129 108 109 119	222 138 82 191 335 146	70 930 400 180 652 1,100 365		8.0 1.8 5.2 2.8 3.0 6.3		1,970 1,030 544 1,440 2,370 950	.43 2.68 1.40 .74 1.96 3.22 1.29	100 2,960 9,090 1,020 218 440 277	376 250 174 291 482 230	264 92 69 202 392 132	77 71 61 76 76 70	1.6 13 7.8 4.2 11 14 7.1	3,440 1,810 958 2,550 3,990 1,640	8.2 8.0 8.2 7.9 7.6 7.6 7.6

a Includes days of less than 0.05 cubic feet per second discharge.

b Calculated from determined constituents.

1239. COLORADO RIVER NEAR SILVER, TEX. -- Continued

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids	Hard as C	dness aCO ₃	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO _z)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (Cl)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
July 1, 2 (12 m 12 p.m.), 5-9, 1959 July 2 (12 p.m12 m.),	101	10		81	34	33	33	120	210	530		1.5		1,260	1.71	344	342	244	68	7.8	2,190	7.6
3-4	610	10		39	7.4	7	7 7	113	43	110		3.8		350	.48	576	128	36	57	3.0	623	7.4
July 10-11, 16-17, 26-27	65.7	17		94	35	39	96	128	237	628		3.5		1,470	2.00	261	378	274	69	8.8	2,380	7.6
12 p.m.), 19 (12 p.m 10 a.m.), 23-24 July 13 (9 a.m12	360	15		68	21	23	35	120	138	370		4.0		967	1.32	940	256	158	67	6.4	1,600	7.7
p.m.), 14, 25		16		48	12	13		122	72	201		4.0		571	.78	424	170	70	63	4.5	975	7.8
July 15, 28-31		16		120	33	50		130	276	810		2.0		1,830	2.49	173	435	328	72	11	3.080	7.5
July 18 (12 p.m12 m.) July 19 (10 a.m	742	1.7		42	13	9	95	128	70	130		4.8		ъ435	. 59	871	160	55	56	3.2	765	7.9
12 p.m.), 20-22	173	15		50	13	1.7	7.7	114	86	268		3.5		683	.93	319	178	85	68	5.8	1.190	7.7
Aug. 1-7		15		182	56	82	9	125	500	1,320		2.5		2,970	4.04	8.90	684	582	72	14	4,790	7.5
Aug. 8-17		14		288	79	1,40	00	116	782	2,250				4,870	6.62	5.13	1,040	948	74	19	7,650	7.5
Aug. 18-31		14		418	99	2,09	90	101	1,180	3,320				7,170	9.75	.77	1,450	1,370	76	24	10,700	7.2
Sept. 1-9		13		518	130	2,59	90	98	1,500	4,130				8,930	12.2		1,830	1,750	76	26	13,600	7.4
Sept. 10		15		48	9.5	7	70	128	61	99		4.8		b370	.50	29.0	159	54	49	2.4	649	8.1
Sept. 11-14	.68	8.8		154	31	2.5	54	72	441	385		3.0		1,310	1.78	2.41	512	452	- 52	4.9	2,100	7.5
Sept. 15-30	a .01	9.0		224	51	50	0	62	675	780		4.0		2,270	3.09	.06	768	718	59	7.8	3,590	7.2
Weighted average	35.7	13		84	23	34	.5	126	189	534				1,270	1.73	122	304	200	71	8.6	2,120	

a Includes days of less than 0.05 cubic feet per second discharge. b Calculated from determined constituents.

COLORADO RIVER BASIN--Continued

1470. COLORADO RIVER NEAR SAN SABA, TEX.

LOCATION. -- At gaging station at bridge on U. S. Highway 190, 5.2 miles downstream from San Saba River, 9.2 miles east of San Saba, San Saba County, and at mile 474, DRAINAGE AREA. -- 30,600 square miles, approximately, of which 11,900 square miles is probably noncontributing.
RECORDS AVAILABLE. -- Chemical analyses: September 1947 to September 1959.

Water temperatures: September 1947 to September 1959. Sediment records: December 1950 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 818 ppm May 21-23, 30-31; minimum, 220 ppm Sept. 29-30.

Hardness: Maximum, 344 ppm May 21-23, 30-31; minimum, 114 ppm Sept. 29-30.

Specific conductance: Maximum daily, 2,010 micromhos July 17; minimum daily, 262 micromhos June 30.

Water temperatures: Maximum, 90°F July 4, Aug. 4, 30; minimum, 35°F Dec. 15.
EXTREMES, 1947-59.--Dissolved solids: Maximum, 1,530 ppm Oct. 15-19, 1947; minimum, 102 ppm Sept. 23-25, 1955.
Hardness: Maximum, 522 ppm Oct. 15-19, 1947; minimum, 71 ppm June 25-30, 1949.

Specific conductance: Maximum daily, 3,420 micromhos Sept. 20, 1947; minimum daily, 161 micromhos Sept. 11, 1952.

Water temperatures: Maximum, 98°F Aug. 3, 1956; minimum, freezing point Jan. 29, 1948, Jan. 30, 1951.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	2.000	ssolved so			iness aCO;	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
Oct. 1-2, 1958	931	11		80	19	12		170	125	200		2.5		a648	0.88	1,630	278	138	50	3.3	1,160	8.0
Oct. 3-10	304	11		60	17		9	199	49	93		2.5		422	.57	346	220	56	37	1.7	708	8.2
Oct. 11-20	180	12		54	23		7	234	37	70		2.0		361	.49	175	229	37	31	1.3	643	8.2
Oct. 21-31	193	11		58	22		3	245	40	75		2.0		388	.53	202	235	34	33	1.5	686	8.2
Nov. 1-10	234	10		61	21		1	230	51	90		3.0		416	.57	263	238	50	36	1.7	733	8.1
Nov. 11-20	199	10		65	23		3	241	62	77		2.0		414	.56	222	256	59	31	1.4	723	8.1
Nov. 21-30	177	9.8		69	24	6	7	250	70	97		1.2		468	.64	224	270	66	35	1.8	812	8.2
Dec. 1-15	177	14		62	25	6	9	253	65	92		2.5		466 -	.63	223	258	50	37	1.8	791	8.2
Dec. 16-31	161	12		67	26		7	267	67	106		2.8		494	.67	215	274	55	38	2.0	857	8.2
Jan. 1-11, 1959	165	9.6		71	28	77	4.2	268	80	112	0.3	2.2		526	.72	234	292	72	36	2.0	896	8.2
Jan. 12-20	150	8.2		70	27		6	263	75	110		2.0		512	.70	207	286	70	37	1.9	873	8.1
Jan. 21-31	143	7.2		61	29	8	5	228	81	130		1.5		520	.71	201	271	84	41	2.3	914	8.2
Feb. 1-10	124	6.8		66	29	8	0	260	72	119		2.0		510	.69	171	284	70	38	2.1	896	8.2
Feb. 11-20	120	5.2		54	29	6	8	238	60	101		.5		442	.60	143	254	58	37	1.8	796	8.2
Feb. 21-28	125	6.0		60	28	6	9	257	60	100		1.2		456	.62	154	264	54	36	1.9	813	8.2
Mar. 1-10	115	10		54	28	6	2	235	54	95		2.5		448	.61	139	250	57	35	1.7	776	7.8
Mar. 11-20	90.4	9.0		52	27	6	2	241	48	89		2.0		436	.59	106	240	43	36	1.7	747	7.9
Mar. 21-31	73.4	8.0		51	30	6	1	244	48	94		1.2		438	.60	86.8	250	50	35	1.7	766	7.8
Apr. 1-10	65.6	8.8		51	29	61	4.0	249	46	95	.2	.8		440	.60	77.9	246	42	35	1.7	773	8.0
Apr. 11-20	107	14		50	33	4	9	250	42	83		2.5		422	.57	122	260	56	29	1.3	729	7.8
Apr. 21-30	98.8	14		52	30	6	0	245	47	93		2.0		440	.60	117	253	52	34	1.6	765	7.8
May 1-11	76.4	14		47	30	5	1	251	38	75		1.8		390	.53	80.4	241	36	32	1.4	687	7.8
May 12-20	130	14		55	29	7	8	258	45	118		1.5		487	.66	171	256	44	40	2.1	855	7.9
May 21-23, 30-31	246	8.2		82	34	14	.9	207	156	2 38		.8		818	1.11	543	344	175	48	3.5	1,350	7.7
May 24-29	876	8.0		70	20	8	1	131	126	136		1.8		a507	.69	1,200	256	149	41	2.2	894	7.5
June 1-3, 10-12	584	14		85	31	15	5	155	170	262		2.8		a796	1.08	1,260	340	212	50	3.6	1,410	7.8
June 4	4,910	18		58	21		0	171	86	77		2.0		a396	.54	5,250	231	91	32	1.4	674	7.7
June 5-9	9,776	13		42	7.5	3	4	116	32	56		2.5		265	.36	6,990	136	41	35	1.3	435	7.6
June 13-24	229	16		59	16	11	4	184	66	169		2.5		567	.77	351	213	62	54	3.4	953	7.9
June 25-30, July 1-2	2,434	14		39	8.5	2	9	132	25	42		2.0		237	.32	1,560	132	24	32	1.1	391	7.6
July 3-9	479	14		52	14	46	5.5	151	50	87	.3	1.5		a344	.47	445	187	64	34	1.5	612	7.7
July 10-19	375	9.2		73	23	18	9	143	130	308		.5		a803	1.09	813	276	160	60	5.0	1,470	7.6
July 20-31	6,522	13		42	6.4	2	8	125	20	48		1.8		227	.31	4,000	131	29	32	1.1	380	7.4
Aug. 1-10	419	14		44	8.3	2	8	140	22	47		1.8		252	.34	285	144	29	30	1.0	410	7.9
Aug. 11-20	101	14		50	16		1	188	22	57		.8		286	.39	78.0	191	37	26	1.0	493	7.5
Aug. 21-31	51.2			46	23		5	219	23	58		.2		320	.44	44.2	210	30	27	1.0	551	7.5
Sept. 1-10	44.3			38	26		7	234	25	60		1.0		a331	.45	39.6	202	10	33	1.4	580	8.0
Sept. 11-20	41.8			39	28		3	243	24	57		.8		335	.46	37.8	212	14	30	1.3	573	7.9
Sept. 21-28	41.8			44	28		4	266	22	56		.8		a342	.47	38.6	225	7	30	1.3	606	7.7
Sept. 29-30	1.345						-	124		42							114	12			365	7.8
E-6-21 E-1 E-1		T.,							10	70				21.5	- 12	501						
Weighted average	593	13		48	12	4	5	148	40	72		2.0		315	0.43	504	170	48	3.7	1.5	536	

a Calculated from determined constituents.

COLORADO RIVER BASIN -- Continued

1580. COLORADO RIVER AT AUSTIN, TEX.

LOCATION.--At raw-water intake at Austin City Water Plant, just downstream from Lamar Street bridge in Austin, Travis County, half a mile downstream from Barton Creek and 4.5 miles upstream from gaging station at Montopolis bridge on U. S. Highway 183. RECORDS AVAILABLE. --Chemical analyses: October 1947 to September 1959.

Water temperatures: October 1947 to September 1959.

Water temperatures: October 1947 to September 1959.

EXTREMES, 1958-59.--Dissolved solida: Naximum, 287 ppm Aug. 5; minimum, 221 ppm Oct. 1-31.

Hardness: Maximum, 181 ppm Feb. 1-28, Apr. 1-30; minimum, 164 ppm Oct. 1-31.

Specific conductance: Maximum daily, 573 micromhos Jan. 2; minimum daily, 268 micromhos July 14.

Water temperatures: Maximum 80°F Sept. 30; minimum, 48°F Jan. 5.

EXTERMES, 1947-59.--Dissolved solida: Maximum, 340 ppm Nov. 1-30, 1951; minimum, 184 ppm July 1-31, 1957.

Hardness: Maximum, 214 ppm Jan. 1-31, 1954; minimum, 125 ppm June 1, 4-30, 1957.

Specific conductance: Maximum daily, 591 micromhos July 1, 1948; minimum daily, 243 micromhos Dec. 2, 1953.

Water temperatures: Maximum 87°F on several days during summer months; minimum, 43°F Jan 28, 1946, Feb. 4, 1949.

REMARKS.-Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

No appreciable inflow between sampling point and gaging station except during periods of heavy local rains.

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Mean dis-	Silica	Iron	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved so		Hard as C		Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
Oct. 1-31, 1958 Nov. 1-30	1,477 906	10 10		44 47	13 14		19 19	179 190	19 22	26 24	0.1	2.0 4.2		a221 236	0.30	881 577	164 175	17 20	20 19	0.6	387 419	8.2
Dec. 1-31	448 953	14 11		40 46	16 15	22	3.3	176 188	22 25	29 32	.3	4.8 7.0		239 274	.33	289 705	166 176	22 22	22 21	.7	413 451	8.2 8.1
Feb. 1-28 Mar. 1-31	986 800	9.4 9.8		46 42	16 15		23 25	190 169	26 26	32 36	.3	1.8		a248 252	.34	660 544	181 166	25 28	21 24	.7	437 431	8.2
Apr. 1-30 May 1-31	1,711	9.0 8.6		46 44	16 15	18	3.5	182 177	25 25	31 34	.3	3.8		255 250	.35	1,180 1,580	181 172	32 26	17 22	.6 .8	434 429	8.1 8.1
June 1-30	1,778	7.4 9.2		44 42	15 15		32 18	176 162	27 24	46 32	.3	2.5		272 245	.37	1,310 1,480	172 166	28 34	29 19	1.0	474 417	7.8 7.0
Aug. 1-4, 6-31 Aug. 5	3,430	9.4		42 40	16 16		21 27	176 181 177	24 24	33 58 38	.3	1.0		245 287 250	.33 .39 .34	2,210 2,660 1,710	171 175 166	27 26 21	21 26	.7 .9	414 501 432	7.8 7.9 7.9
Weighted average	1,631	9.6		43	15		23	177	24	34	0.2	2.3		249	0.34	1,100	169	24	23	0.8	428	

a Calculated from determined constituents.

COLORADO RIVER BASIN -- Continued

1620. COLORADO RIVER AT WHARTON, TEX.

LOCATION. -- At gaging station at bridge on U. S. Highway 59 in Wharton, Wharton County, 1,000 feet downstream from Texas & New Orleans Railroad bridge, 12 miles upstream from Jones Creek and at

DRAINAGE AREA.--41,380 square miles, approximately, of which 11,900 square miles is probably noncontributing.

RECORDS AVAILABLE. -- Chemical analyses: April 1944 to September 1959.
Water temperatures: October 1945 to September 1948, March 1950 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 302 ppm Dec. 1-31; minimum, 118 ppm May 24-25.

Hardness: Maximum, 210 ppm Dec. 1-31; minimum, 82 ppm May 24-25.

Specific conductance: Maximum daily, 604 micromhos Sept. 10; minimum daily, 190 micromhos Apr. 11.

Water temperatures: Maximum, 93°F June 18; minimum, 39°F Jan. 5.

water temperatures: maximum, 73 r June 10, intrimum, 37 r Jan. 7.

EXTREMES, 1944-59. -Dissolved solids: Maximum, 386 ppm Apr. 1-10, 1948; minimum, 108 ppm Sept. 27-29, 1957.

Hardness: Maximum, 231 ppm Feb. 1-10, 1947; minimum, 66 ppm Sept. 27-29, 1957.

Specific conductance: Maximum daily, 765 micromhos Feb. 5, 1957; minimum daily, 146 micromhos Sept. 27, 1957.

Water temperatures (1945-46, 1950-59): Maximum, 95°F July 26, 1954; minimum, 38°F Jan. 17, 1957.

REMARKS. -- Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Mean			Cai-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	1.000	ssolved sol		Hard as Co		Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-31, 1958 Nov. 1-30	2,244	10		46 50	10 11	18 18	4.2	168 176	28 32	25 26		2.2		249 253	0.34	1,500 1,580	156 170	18 26	20 18	0.6	395 431	8.0 7.9
Dec. 1-31	876 1,065	6.4 5.8		58 52	16 15	25 26	3.3 3.4	218 191	36 36	37 36	0.3	3.0 2.5		302 287	.41	714 825	210 191	32 34	20 22	.8	522 490	8.0 7.6
Feb. 1-28 Mar. 1-31	2,504 1,199	9.6 LO		49 50	11 15	20 25	3.9 3.6	166 194	34 37	28 35		2.8		250 298	.34	1,690 965	168 186	32 28	20 22	. 7	417 487	8.1 8.2
Apr. 1-9, 23-30 Apr. 10-11, 14, 19-20 Apr. 12-13, 15-18,	1,954	9.6 12		50 30	13 3.1	24 6.8	3.8	182 98	36 11	35 8.2		2.5		270 a 125	.37	1,420 5,700	178 88	30 7	22 14	.8	462 217	7.8 7.6
21-22	12,090	12		38	4.6	11	3.6	115	25	14		3.2		a 168	.23	5,480	114	20	1.7	.4	292	7.5
May 1-23, 26-31 May 24-25	2,638 8,820	11		48 26	13 4.1	20 7.9	3.2 2.6	176 93	28 7.6	31 11		3.2 1.8		254 a 118	.35	1,810 2,810	174 82	30 6	20 17	.7	439 204	7.4
June 1-30 July 1-31	1,837 1,260	11		38 39	13	20 21	3.3	152 156	26 28	30 35	.2	1.2		226 242	.31	1,120 823	148 159	24 31	22 22	.7	390 410	7.6 7.0
Aug. 1-31	2,597 2,563	11 13		44 42	15 15	21 24	3.4 3.6	175 175	26 28	38 38		2.2 1.5		255 254	.35	1,790 1,760	172 166	28 23	21 23	.7	432 446	7.8 7.8
Weighted average	2,372	11		43	11	18	3.5	159	2.7	27		2.5		231	0.31	1,480	152	22	20	0.6	393	

a Calculated from determined constituents.

COLORADO RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN COLORADO RIVER BASIN IN TEXAS

					Chem	ical anal	yses, i	n parts p	er milli	on, water	year Oc	cober 1	958 to	September	1959							
	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		issolved so		Hard as Co	dness aCO ₃	Per-	So-	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₂)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	dium adsorp- tion ratio	ance (micro- mhos at 25° C)	рН
								1180.	LAKE J.	в. тнома	S NEAR V	INCENT										
Aug. 12, 1959		2.6	0.00	32	7.2	6	5	169	62	32	0.9	0.2		285	0.39		110	0	56	2.7	477	7.4
						,	1	1230. LA	KE COLOR	ADO CITY	NEAR COL	ORADO C	ITY						•			
Nov. 6, 1958		3.9		39	8.4	3	7	164	38	26	0.5	0.1		a241	0.33		132	0	38	1.4	411	8.2
								1255. 0	AK CREEK	RESERVOI	R NEAR B	LACKWEL	L									
Nov. 6, 1958		1.6		44	9.2	1	3	134	35	21	0.1	0.2		190	0.26		148	38	16	0.5	350	7.9
								1265	COLOR	ADO RIVER	AT BALL	INGER										
June 20, 1959	1 10			77	24	10								T - 221	T							
June 20, 1939	1 10	6.4		1_//	24	18	2 /	104	203	275		0.2		a831	1.13		290	206	58	4.6	1,410	6.7
								1320.	LAKE NA	SWORTHY N	EAR SAN	ANGELO										
Nov. 6, 1958		7.6		56	14	3	9	210	27	56	0.3	1.0		a310	0.42		197	25	30	1.2	549	7.9
								1345. S.	AN ANGEL	O RESERVO	IR AT SA	N ANGEL	0									
Nov. 6, 1958		1.3		40	7.2	1	0	158	8.4	9.5	0.1	0.4		a162	0.22		129	0	15	0.4	290	8.0
							SOUTH I	ORK JIM	NED CREE	K AT US H	IGHWAY 8	4 NEAR	GOLDSBO	RO								
June 21, 1959		9.4		65	7.7	3	0	170	9.6	76	0.2	1.5		283	0.38		194	54	2.5	0.9	525	7.8
								ROUGH CRE	EK AT US	HIGHWAY	84 NEAR	GOLDSBO	RO									
June 21, 1959	ь0	7.8		39	3.6	2.9	4.9	141	3.0	2.8	0.1	1.8		135	0.18		1112	0	5	0.1	234	7.0
					3,10					DS CREEK				1 133								
June 21, 1959	. 0	7.8		53	15	2	1	216	1 24	25	0.2	1.0		253	0.34		194	17	19	0.7	448	7.6
June 21, 1999	1 0	1.0		1 22	1 13		-		22 22222					1 233	1 0.34		194	17	17	0.7	1 440	7.0
										N BAYOU A												
June 21, 1959	0.2	12		61	9.6	3	0	191	39	42	0.2	1.2		a294	0.40		192	35	26	0.9	494	7.8
								144	5. SAN	SABA RIVE	R AT MEN	ARD										
Nov. 5, 1958	12	16		66	23	2	0	301	18	25	0.3	1.8		318	0.43		259	12	14	0.5	548	8.0

a Residue on evaporation at 180°C . b Field estimate.

Chemical analyses, in parts per million, water year October 1958 to September 1959 -- Continued

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	1	solved sol			dness αCO ₃	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
								1460	. SAN SA	ABA RIVER	AT SAN	SABA										
pr. 21, 1959	76	12		54	27	2	0	281	22	25	0.2	1.5		a306	0.42		246	1.5	15	0.6	543	7.7
								CUMMINS	CREEK AT	FM ROAD 1	109 NEAR	COLUMB	US									
dar. 17, 1959		16 9.0		68	4.3	8.2	3.2	211 92	20 6.0	34 12	0.3	0.0		a280 117	0.38		187 81	14	23 17	0.8	470 212	7.7
							COI	ORADO RI	VER AT U	HIGHWAY	90A NEA	R EAGLE	LAKE									
Apr. 26, 1959	-	12		61	12	2	0	207	32	28	0.3	2.8		270	0.37		202	32	18	0.6	478	7.8
									EAGLE L	AKE AT EAG	GLE LAKE											
pr. 26, 1959	- 60	17		40	7.2		.2	153	10	14	0.2	0.2		176	0.24		129	4	17	0.5	314	6.7
								1625.	COLORA	OO RIVER 1	NEAR BAY	CITY										
pr. 25, 1959	- 3,160	111		54	9.7	2	22	1.77	36	26	0.2	2.5		248	0.34		175	30	21	0.7	439	7.3

a Residue on evaporation at $180\,^{\rm o}{\rm C}$. b Field estimate.

MISCELLANEOUS ANALYSES OF STREAMS IN LAVACA RIVER BASIN IN TEXAS

	-			Cal-	Mag-	ģ	Po-	Bicar-	Sul-	Chlo-	Fluo-	ż	- Bo	Dis (ca	Dissolved solids (calculated)	sp	Hardness as CaCO.	CO,	Per-	So-	Specific conduct-	
	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	(B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
								1635.	LAVACA	1635. LAVACA RIVER AT HALLETTSVILLE	HALLET	LSVILLE										
Apr. 10, 1959	1,480	11		30	1.5	11		92	11	9.5		4.5		124	0.17		81	9	22	0.5	221	7.5
								BRUSHY	CREEK AT	BRUSHY CREEK AT US HIGHWAY 77 NEAR YOAKUM	AX 77 NR	EAR YOAKI	W									
Apr. 10, 1959		7.8		35	3.1	26		101	14	05		7.7		180	0.24		100	17	36	1.1	341	7.3
							NAV	TIDAD RIV	ER AT US	NAVIDAD RIVER AT US HIGHWAY 77 NEAR SCHULENBERG	77 NEAR	SCHULEN	BERG									
Apr. 10, 1959		11		. 30	1.2	9.9	3.9	46	9.9	6.5		2.5		116	0.16		80	0	14	0.3	200	7.5
							NAV	TIDAD RIV	ER AT US	NAVIDAD RIVER AT US HIGHWAY 90A NEAR HALLETTSVILLE	90a NEA	R HALLET	TSVILLE									
Apr. 26, 1959		23		138	2.7	65	3.8	607	30	95	7.0	1.2		260	0.76		356	20	28	1.5	915	

GUADALUPE RIVER BASIN

1765. GUADALUPE RIVER AT VICTORIA, TEX.

LOCATION. --At gaging station at bridge on U. S. Highway 59 in Victoria, Victoria County, 1300 feet upstream from Texas & New Orleans Railroad bridge, 10 miles upstream from Coleto Creek, and at mile 51. DRAINAGE AREA. -- 5,161 square miles.

RECORDS AVAILABLE .-- Chemical analyses: October 1945 to September 1946, October 1948 to September 1959.

Water temperatures: November 1950 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 376 ppm Mar. 1-10; minimum, 216 ppm May 23-26. Hardness: Maximum, 252 ppm Dec. 21-31; minimum, 148 ppm Apr. 9-20.

Hardness: Maximum, 252 ppm Dec. 21-31; minimum, 148 ppm Apr. 9-20.

Specific conductance: Maximum daily, 801 micromhos Jan. 23; minimum daily, 298 micromhos Apr. 16.

Water temperatures: Maximum, 86°F Aug. 5-6; minimum, 46°F Jan. 5.

EXTREMES, 1945-46, 1948-59. "Dissolved solids: Maximum, 1,040 ppm Jan. 11-17, 1946; minimum, 134 ppm Oct. 17-21, 1957.

Hardness: Maximum, 428 ppm Jan. 11-17, 1946; minimum, 86 ppm Oct. 23-31, 1956.

Specific conductance: Maximum daily, 1,950 micromhos Jan. 11-17, 1946; minimum daily, 184 micromhos Oct. 24, 1956.

Water temperatures (1950-59): Maximum, 90°F Aug. 4, 27, 1952; minimum daily, 184 micromhos Oct. 24, 1956.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Faper 1632.

	Mean				Mag-		Po-								solved sol		Hard as Co			So-	Specific	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	So- dium (Na)	tas- sium (K)	Bicar- bonate (HCO ₁)	Sul- fate (SO,)	Chlo- ride (CI)	Fluo- ride (F)	Ni- trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	Per- cent so- dium	dium adsorp- tion ratio	conduct- ance (micro- mhos at 25° C)	pH
Oct. 1-10, 1958 Oct. 11-20 Oct. 21-28 Oct. 29-31, Nov. 1-10 Nov. 11-20 Nov. 21-30	1,615 1,436 3,112 1,884	15 18 17 14 17		50 64 70 57 64 70	10 15 16 12 15	16 23 23 17 20 25	3.5 2.8 2.5 2.9 2.4 2.3	184 232 255 200 238 260	20 27 27 25 25 28	24 33 32 24 27 35		3.8 6.2 8.3 5.5 7.3 7.3		a232 322 332 274 303 338	0.32 .44 .45 .37 .41 .46	1,330 1,400 1,290 2,300 1,540 1,470	166 221 240 192 221 244	15 31 32 28 26 32	17 18 17 16 16 18	0.5 .7 .6 .5 .6	406 530 560 446 523 574	7.9 7.7 7.8 7.9 8.1 7.9
Dec. 1-10 Dec. 11-20 Dec. 21-31 Jan. 1-10, 1959 Jan. 21-31 Jan. 21-31	1,393 1,465 1,363 1,251	L5 L4 L4 L5 L3 L2		70 57 73 73 55 67	18 18 17 16 18 18	26 25 26 29 28 31	2.3 2.1 2.3 2.3 1.7	264 228 274 277 225 259	29 30 28 29 27 32	36 37 37 41 42 46	0.3	7.5 7.7 7.0 6.7 7.7 7.4		344 315 356 366 304 a342	.47 .43 .48 .50 .41	1,380 1,180 1,410 1,350 1,030 1,110	248 216 252 248 211 241	32 29 28 21 26 28	18 20 18 20 22 22	.7 .7 .7 .8 .8	586 535 592 609 550 616	7.9 8.1 8.1 8.1 8.2 7.9
Feb. 1-10	2,510 1,686 1,523 1,245	15 15 14 15 15 15		58 54 64 72 71 64	15 12 13 16 17 18	29 30 26 33 33 30	2.8 3.3 3.1 2.8 2.4 2.2	223 189 219 257 262 249	29 31 36 39 35 32	42 42 34 48 50 42		4.9 4.2 5.8 6.1 6.3 5.0		310 294 312 376 372 338	.42 .40 .42 .51 .51	1,380 1,990 1,420 1,550 1,250	206 184 213 246 247 234	24 29 34 35 32 30	23 26 21 22 22 22	.9 1.0 .8 .9 .9	537 506 524 617 633 576	8.1 8.1 8.0 8.1 8.2 8.1
Apr. 1-8	5,634 2,228 1,755 1,463 1,246	12 13 15 15 15 14 9.6		56 46 57 68 70 64 46	18 8.0 11 15 15 15 9.1	28 20 22 29 30 29 19	2.3 3.7 4.0 3.0 2.5 2.8 3.0	226 153 194 236 242 233 164	33 25 30 34 36 31 19	42 28 33 43 42 41 27		4.8 3.0 3.2 5.4 6.1 4.6 2.5		318 235 285 348 352 332 a216	.43 .32 .39 .47 .48 .45	992 3,570 1,710 1,650 1,390 1,120 1,610	214 148 187 231 236 221 152	28 22 28 38 38 30 18	22 22 20 21 21 22 21	.8 .7 .7 .8 .8 .8	539 389 466 582 588 559 393	8.1 7.7 8.0 7.3 7.3 7.4 7.6
June 1-9	965 1,295 1,825 990	17 16 16 18 18		66 62 58 54 58 66	18 14 15 10 13 14	31 30 30 18 19 25	2.4 2.7 2.3 2.8 2.8 2.6	246 230 228 198 222 246	33 33 30 22 21 27	46 40 39 22 25 34		4.4 3.6 3.0 4.7 4.0 4.1		360 320 310 256 280 322	.49 .44 .42 .35 .38	1,120 834 1,080 1,260 748 935	238 212 206 176 198 222	37 24 19 13 16 20	22 23 24 18 17	.9 .9 .9 .6 .6	584 541 530 429 462 537	7.4 8.0 7.9 7.5 7.7 7.7
Aug. 1-4	825 824 807 715	20 19 18 20 20 18		60 55 60 61 59	17 15 17 18 17	27 24 28 27 27 27	2.9 2.8 2.7 2.5 2.4 2.3	233 215 236 241 237	28 27 29 30 29 30	44 37 44 39 38 38		4.0 2.5 2.5 3.0 2.5 2.8		318 a288 320 316 a311	.43 .39 .44 .43	716 642 697 610 584	220 198 224 222 217	28 22 30 24 23	21 20 21 21 21	.8 .7 .8 .8	531 480 - 525 540 - 531 523	7.4 7.5 7.2 7.9 7.4
Weighted average	1,580	15		60	14	25	2.8	219	28	35		5.0		303	0.41	1,290	207	28	21	0.8	511	

a Calculated from determined constituents.

LOCATION . -- At gaging station at bridge on U. S. Highway 183, 1.3 miles southeast of Courthouse in Goliad, Goliad County, and 10 miles upstream from Manahuilla Creek. DRAINAGE AREA .-- 3,918 square miles.

RECORDS AVAILABLE .-- Chemical analyses: September 1945 to September 1946, September 1958 to September 1959.

Water temperatures: September 1958 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 808 ppm Sept. 18; minimum, 159 ppm Oct. 30-31, Nov. 1.

Hardness: Maximum, 362 ppm Mar. 21-31; minimum, 96 ppm Oct. 30-31, Nov. 1.

Specific conductance: Maximum daily, 1,390 micromhos Apr. 3; minimum daily, 260 micromhos Oct. 31.

Specific conductance: Maximum daily, 1,390 micromhos Apr. 3; minimum daily, 260 micromhos Oct. 31.

Water temperatures: Maximum, 87°F Sept. 21; minimum, 45°F Jan. 4.

EXTREMES, 1945-46, 1958-59.—Dissolved solids: Maximum, 808 ppm Sept. 18, 1959; minimum, 159 ppm Oct. 30-31, Nov. 1, 1958.

Hardness: Maximum, 362 ppm Mar. 21-31, 1959; minimum, 96 ppm Oct. 30-31, Nov. 1, 1958.

Specific conductance: Maximum daily, 1,390 micromhos Apr. 3, 1959; minimum daily, 208 micromhos Apr. 24, 1946.

Water temperatures (1958-59): Maximum, 87°F Sept. 21, 1959; minimum, 45°F Jan. 4, 1959.

REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

					Chemi	cal ana	lyses, i	n parts p	er milli	on, wate	r year Oo	tober 1	958 to S	September	1959							
	Mean			Cal-	Mag-	So-	Po-	Bicar-	Car-	Sul-	Chlo-	Fluo-	Ni-		solved so		Hard as C	dness aCO ₁	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	bonate (CO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-10, 1958 Oct. 11-20 Oct. 21-29 Oct. 30-31, Nov. 1 Nov. 2-10 Nov. 21-30	1,291 824 894 4,403 2,419 1,296 836	15 16 18 15 16 16		60 74 76 31 60 74 83	12 15 15 4.5 12 15 18		35 42 48 17 25 33 43	192 227 230 102 189 233 256	0 3 4 0 0 0 8	51 64 65 21 45 57 68	41 52 60 16 32 42 51	0.3 .3 .3 .2 .2 .2	7.0 6.1 7.8 4.2 6.9 8.3 9.6	322 392 419 al59 298 368 434	0.44 .53 .57 .22 .41 .50	1,120 872 1,010 1,890 1,950 1,290 980	199 246 251 96 199 246 281	42 55 62 12 44 55 58	28 27 29 27 21 22 25	1.1 1.2 1.3 .7 .8 .9	528 635 676 271 485 601 694	8.2 8.3 8.3 7.8 8.0 8.1 8.4
Dec. 1-10	662 575 516 504 459 434	17 17 20 20 19 18		90 94 96 95 100 101	19 21 21 19 20 22	73	58 67 87 1 5. 81	286 291 275 285 304 286	4 8 20 11 7 15	77 82 90 92 98 101	68 83 107 90 94 96	.4 .4 .4 .4 .4	12 13 13 13 15 18	499 544 604 571 602 604	.68 .74 .82 .78 .82 .82	892 845 841 777 746 708	302 321 326 315 332 342	62 69 67 63 71 83	29 31 37 33 35 34	1.4 1.6 2.1 1.8 1.9	797 879 965 909 955 956	8.3 8.3 8.7 8.5 8.4 8.5
Feb. 1-10	504 592 466 398	23 23 22 22 21 19		98 96 89 96 103 107	19 19 18 19 20 23		78 75 76 81 88 89	294 281 277 285 312 310	0 7 6 7 0 4	97 94 85 95 101 111	96 90 87 97 111 118	.5 .4 .6 .6	15 14 14 14 14 14	589 568 545 597 637 660	.80 .77 .74 .81 .87	743 773 871 751 685 602	322 318 296 318 339 362	82 76 59 72 84 101	34 34 36 36 36 36	1.9 1.8 1.9 2.0 2.1 2.0	942 910 886 938 1,010 1,050	8.1 8.3 8.4 8.4 8.2 8.3
Apr. 1-9-12-13, 15-17 Apr. 10, 12-13, 15-17 Apr. 11, 14, 18-21 Apr. 22-30 May 1-2	869 406 370 1,757 541	20 16 19 20 21 20 16 20		104 55 74 98 101 46 74 92 63	24 10 15 22 22 7.0 16 20 12	90	1 6. 44 73 77 100 40 54 78 55	1 310 168 217 297 280 133 218 286 199	0 0 0 0 19 2 2 0	115 51 78 102 109 52 75 94 62	127 52 96 101 122 39 70 96 64	.4 .4 .5 .5 .4 .4 .5 .4	13 11 12 11 14 9.1 11 13 8.2	689 353 505 606 703 a280 a425 605 412	.94 .48 .69 .82 .96 .38 .58	686 1,100 1,180 664 702 1,330 621 735 603	358 178 246 335 342 144 250 312 206	104 40 68 92 82 31 68 77 44	35 35 39 33 39 38 32 35 36	2.1 1.4 2.0 1.8 2.4 1.4 1.5 1.9	1,070 560 809 960 1,050 475 729 932 658	8.1 7.8 7.7 8.0 8.5 8.3 8.3 8.2 8.0
June 1-5, 8-12 June 6-7	757 243 535 478 272	21 17 20 15 20 21 21		89 43 101 74 72 87 92	17 5.8 23 16 16 20 20		89 28 108 78 58 65 86	273 148 305 227 226 260 278	0 0 0 0 0 0	97 25 125 86 73 93 107	106 28 136 97 71 88 107	.5 .3 .5 .4 .4 .4	11 5.7 9.4 7.9 11 6.7 8.2	586 a226 688 517 459 556 609	.80 .31 .94 .70 .62 .76	544 462 451 747 592 408 459	292 131 346 250 246 299 312	68 10 96 64 60 86 84	40 32 40 40 34 32 38	2.3 1.1 2.5 2.1 1.6 1.6 2.1	921 397 1,100 829 717 826 947	8.1 8.0 7.9 7.6 7.8 7.9 7.8
Aug. 1-10	204 247 243 226 199	20 24 23 23 23 23		90 86 92 78 92 	22 22 21 18 19		82 88 93 73 90 	276 267 290 246 284 269 283	0 0 0 0 0	99 109 106 90 104 	110 110 114 87 107 216 114	.5 .5 .4 .6	10 9.2 10 9.7 11	598 602 627 516 610 808 605	.81 .82 .85 .70 .83 1.10	342 332 418 339 372 434 363	315 305 316 268 308 290 302	89 86 78 67 75 70	36 39 39 37 39 40	2.0 2.2 2.3 1.9 2.2	939 936 978 813 960 1,300 988	7.9 7.9 8.0 8.1 8.0 8.1 7.8
Weighted average	597	1.8		77	16		57	b242		73	70	0.4	10	457	0.62	737	258	60	32	1.5	732	

a Calculated from determined constituents.

b Includes equivalent of individual carbonate values shown above.

GUADALUPE RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN GUADALUPE RIVER BASIN IN TEXAS

	Mean			3	Mag-	ŝ	Po	Bicar-	Sul-	Chlo	Fluo	ž	Bo-	Dia (c.	Dissolved solids (calculated)	sbi	Hardness as CaCO,	rco,	Per-	-S	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO.)	ride (CI)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	dium sent	adsorp- tion ratio	ance (micro- mhos at 25° C)	Hd
								1720.	SAN M	SAN MARCOS RIVER AT LULING	TER AT LI	TLING										
Feb. 25, 1959	340	11		80	17		52	357	24	45	0.2	0.0		405	0.55		270	0	29	1.4	206	7.4
								1	724. PL	1724. PLUM CREEK AT LOCKHART	AT LOCK	TART										
Feb. 25, 1959		18		76	5.4		76	283	71	67	1.1	23		767	0.67		256	24	39	2.1	826	7.4
								1835.	SAN ANTO	SAN ANTONIO RIVER NEAR FALLS CITY	R NEAR FA	ALLS CIT	7									
Apr. 10, 1959	433	16	Ц	06	20		19	a264	96	75	0.3	22		208	69.0		306	06	30	1.5	852	8.5
						ы	ECLETO CREEK AT STATE HIGHWAY 123 TWELVE MILES SOUTH OF SECUIN	EK AT ST	ATE HIGH	WAY 123 '	IMELVE M.	ILES SOU	TH OF SE	EGUIN								
May 4, 1959		10		12	3.7	10	4.5	74	0.2	4.0	0.1	0.5		81	0.11		45	0	30	9.0	141	6.3
								.870. ES	CONDIDO	1870. ESCONDIDO RESERVOIR NO. 1 NEAR KENEDY	R NO. 1 1	NEAR KEN	EDY									
Feb. 10, 1959		1.9	9	33	2.8	6.8	6.5	120	7.2	4.8	0.4	3.2		126	0.17		76	0	13	0.3	236	7.5
								187	5. ESCO	1875. ESCONDIDO CREEK AT KENEDY	SEK AT KI	ENEDY										
											-											1

MISSION RIVER BASIN

MISCELLANEOUS ANALYSES OF STREAMS IN MISSION RIVER BASIN IN TEXAS

4.2 1,220 7.7 Hd Specific conduct-ance (micro-mhos at 25° C) 57 Per-cent so-dium 44 Hardness as CaCO, Cal-cium, magne-sium 250 Tons per day Dissolved solids (calculated) Tons per acre-foot 0.88 Chemical analyses, in parts per million, water year October 1958 to September 1959 Parts per mil-lion 779 Bo-Ni-trate (NO,) 250 24 250 0.4 0.0 NEDIO CREEK AT US HIGHWAY 181 NEAR BEEVILLE Fluo-ride (F) Chlo-ride (CI) Sul-fate (SO,) Bicar-bonate (HCO₁) Po-tas-sium (K) 154 So-dium (Ng) Mag-ne-sium (Mg) 17 Cal-cium (Ca) 72 Iron (Fe) Silica (SiO₂) 3.4 Mean dis-charge (cfs) Мау 3, 1959----Date of collection

ARANSAS RIVER BASIN MISCELLANDOUS ANALYSES OF STREAMS IN ARANSAS RIVER BASIN IN TEXAS

						chemical analyses, in pairs per milital, water year occopier 1750 to september 1757	353, 41	Mar Co P	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	out, water	Year o	Tanna	220 00	Januar dac	1222							
	Mean	į		3	Mag-	Š	P.	Bicar-	Sul-	Chlo-	Fluo-	Ä	è.	Diss.	Dissolved solids (calculated)		Hardness as CaCO,	20,	Per-	So-	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	Sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	(NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	На
							PAP	ALOTE CRI	ZEK AT US	PAPALOTE CREEK AT US HIGHMAY 181 NEAR SKIDWORE	181 NE.	AR SKIDN	IORE									
May 3, 1959		30		80	9.5	25		313	4.9	20	0.3	0.2		325	0.44		238	0	1.8	0.7	553	7.1
							ARANSA	S RIVER	AT WELDER	ARANSAS RIVER AT WELDER WILDLIPE REPUGE NEAR SINTON	E REFUG	E NEAR S	NOTNIS									
Mar. 14, 1959		11		07	8.2	89		125	91	146	0.2	3.0		374	0.51		134	31	59	3.4	720	6.9
	-															-			1			

NUECES RIVER BASIN

2110. NUECES RIVER NEAR MATHIS, TEX.

LOCATION.--At intake tower at Wesley Seale Dam, 0.6 mile upstream from gaging station at bridge on State Highway 359, and 4 miles southwest of Mathis, San Patricio County.

DRAINAGE AREA.--16,660 square miles.

RECORDS AVAILABLE.--Chemical analyses: October 1947 to September 1959.

Water temperatures: October 1947 to September 1959.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 362 ppm Aug. 1-31; minimum, 237 ppm Nov. 1-30.

Hardness: Maximum, 174 ppm May 1-31; minimum, 136 ppm Nov. 1-10.

Specific conductance: Maximum daily, 699 micromhos July 21; minimum daily, 370 micromhos Nov. 15.

Water temperatures: Maximum, 91°F Aug. 8-9; minimum, 48°F Jan. 5-9.

EXTREMES, 1947-59.--Dissolved solids: Maximum, 548 ppm June 1-30, 1948; minimum, 175 ppm Apr. 27-30, 1949.

Hardness: Maximum, 201 ppm May 1-24, 1951; minimum, 85 ppm Apr. 27-30, 1949.

Water temperatures: Maximum, 94°F Aug. 8-9; minimum, 48°F Jan. 1948.

REMARKS.--Records of specific conductance: Maximum, 94°F July 27, 1948; minimum, 38°F Jan. 31, 1948.

REMARKS.---Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632.

Chemical analyses, in parts per million, water year October 1958 to September 1959

	Mean dis-	Silica	Iron	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		ssolved so		Hare as C		Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	(Ca)	ne- sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₁)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
Oct. 1-31, 1958 Nov. 1-30		20 16		53 46	5.3	26 22	8.3	189 168	22 21	27 24	0.1	1.5		280 237	0.38	3,150 2,160	154 136	0	26 25	0.9	430 386	8.1
Dec. 1-31		15 17		48 51	5.5 6.0	26 31	6.3 6.1	172 182	24 28	2 7 3 4	.2	2.5		254 276	.35	223 294	142 152	2 2	2 7 30	.9 1.1	410 450	8.0 8.0
Feb. 1-28 Mar. 1-31		14 14		54 54	6.3 7.1	30 34	6.2 6.5	190 194	28 30	35 39	.2	1.5		285 296	.39 .40	119 88.7	160 164	4	28 30	1.0	465 485	8.2 8.0
Apr. 1-30 May 1-30	87.5 95.3	12 11		56 56	8.2	35 43	6.4	198 195	35 37	42 51	.2	1.0		309 318	.42	73.0 81.8	173 174	10 14	30 34	1.2	512 544	8.0 8.0
June 1-30 July 1-31	114 845	9.8 15		54 52	8.0 8.8	53 60	6.8	194 189	39 41	66 74	.2	1.0		342 a353	.47 .48	105 805	168 166	8 10	40 43	1.8	581 599	7.9 7.0
Aug. 1-31 Sept. 1-30		16 15		53 54	9.0 9.2	60 58	8.7 9.1	189 194	42 42	77 73		2.0		362 358	.49 .49	129 95.2	169 172	14 14	42 41	2.0	602 615	7.8 7.4
Weighted average	829	1.7		50	5.7	29	7.4	181	25	33		1.6		274	0.37	613	148	0	29	1.0	439	

a Calculated from determined constituents.

NUECES RIVER BASIN--Continued

MISCELLANEOUS ANALYSES OF STREAMS IN NUECES RIVER BASIN IN TEXAS

6
9
-
September
5
r 1958
r year October
year
, water
Ton
=
mí.]
s per million
parts
in
analyses,
Chemical

	Мевп			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo	Fluo-	Ŋ	- Bo	Diss.	Dissolved solids (calculated)		Hardness as CaCO,		Per-	So-dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	(B)	Parts per mil- lion	Tons T per acre-	Tons per day	Cal- cium, magne- sium	Non- carbon- ate		adsorp- tion ratio	ance (micro- mhos at 25° C)	Hq
								COLMENA	REEK AT	COLMENA CREEK AT US HIGHWAY 59 NEAR FREER	IY 59 NE.	AR FREER										
Mar. 30, 1959	al	09		20	7.8	381		b683	127	149	3.4	0.2	H	1,080	1.47	H	82	0	91	18	1,680	8.9
								1945.		NUECES RIVER NEAR TILDEN	EAR TIL	NEO										
Feb. 16, 1959	85	2.3		72 67	14	107	10.5	199	52 67	110	0.2	7.7	П	c443 522	0.60	H	237	74	37	3.1	769	8.0
									FRIO R	FRIO RIVER AT TILDEN	TLDEN											
Feb. 16, 1959		2.1		95	23	288	m 5-	300	138	330	9.0	3.5		1,660	1.35	$\mid \cdot \mid$	234 203	00	73	8.2	1,760	8.2
							SAN MI	GUEL CREE	TK AT STA	SAN MIGUEL CREEK AT STATE HIGHWAY 173 NORTH OF TILDEN	Y 173 N	ORTH OF	TILDEN									
Feb. 16, 1959		4.4		107	21	89		285	156	106	0.3	0.0		c635	0.86	H	354	120	35	2.0	1,040	8.0
								20%	2070. FRIO	FRIO RIVER AT CALLIHAM	CALLIH.	AM										
Jan. 30, Feb. 1-6, 1959		7.8		76	19	220		253	129	315	H	6.1	H	c928	1.26	H	312	105	09	5.4	1,580	8.1
								A	ASCOSA R	ATASCOSA RIVER AT PLEASANTON	LEASANT	NO										
Feb. 16, 1959		1.2		130	75	178		287	298	240	0.4	0.0	H	1,040	1.41	H	167	262	77	3.5	1,740	8.1
							0	LMOS CREE	K AI US	OLMOS CREEK AT US HIGHWAY 281 NEAR WHITSETT	81 NEAR	WHITSET	H									
Apr. 19, 1959		16		68	2.4	78		141	145	56	0.5	1.0		436	0.59	H	180	79	48	2.5	695	7.7
							SAN C	HRISTOVAL	CREEK A	SAN CHRISTOVAL CREEK AT US HIGHWAY 281 NEAR WHITSETT	WAY 281	NEAR WH	IITSELL									
Apr. 19, 1959		20		37	89.	20	(124	34	4.2	0.3	0.2	H	178	0.24	H	1.00	0	31	6.0	767	4.9
							S	ULPHUR CS	LEEK AT S	SULPHUR CREEK AT STATE HIGHWAY 9 AT OAKVILLE	WAY 9 A	T OAKVIL	TE									
Apr. 19, 1959		11		76	14	239		376	16	285	0.5	0.0		932	1.27	H	292	0	99	6.1	1,640	7.3
							Z	NUECES RIV	ER AT US	RIVER AT US HIGHWAY 59 NEAR GEORGE WEST	59 NEAR	GEORGE	WEST									
Apr. 19, 1959		17		102	119	269		323	162	342	7.0	1.8	H	1,070	1.46	H	332	68	99	7.9	1,860	7.3
a Field estimate. b Includes equivalent of 54 parts per million carbonate c Residue on evaporation at 180°C.	of 54 part	S per m	illion c	arbonat	e (CO ₃).																	

3640. RIO GRANDE NEAR EL PASO, TEX.

LOCATION.--At gaging station 5 miles northwest of El Paso, El Paso County, 6 miles northwest of Juarez, Chihuahua, and 1.9 miles above the American Dam. DRAINAGE AREA.--29,267 square miles.
RECORDS AVAILABLE.--Chemical analyses: 1933 to 1959.

REMARKS.--Chemical analyses by U. S. Department of Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids		dness aCO,	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
October 1958 November December	31 21 31	316 110 82.0			112 134 144	21 30 32	195 302 347		225 273 287	365 518 582	176 268 303		(b)	0.21 .28 .37	1,039 1,465 1,614	1.41 1.99 2.20		366 460 491	182 236 256	54 59 61	4.4 6.1 6.8	1,580 2,160 2,390	7.8 8.3 8.0
January 1959 February March	31 17 26	65.2 60.2 825	22		142 137 78	32 31 15	396 358 95	14 	295 299 193	594 561 192	356 314 78	1.0	(b) 0.6 .6	.32 .34 .15	1,747 1,635 612	2.38 2.22 .83		487 472 257	246 227 98	63 62 44	7.8 7.2 2.6	2,600 2,430 926	7.9 8.0 7.9
April May June	30 31 30	650 728 1,020			93 92 89	19 19 17	143 151 132	==	220 210 214	261 259 237	128 138 117	==	.6 (b) (b)	.14 .14 .14	807 823 736	1.10 1.12 1.00		310 306 291	130 134 116	50 52 50	3.5 3.8 3.4	1,240 1,260 1,150	8.1 8.0 7.8
July August September	31 31 28	1,010 1,080 567	19 		89 91 101	17 18 20	134 130 163	8.6 	201 214 240	252 245 299	116 112 138	.8 	.0 .6 .6	.17 .11 .17	773 769 888	1.05 1.05 1.21		294 301 334	129 126 137	49 48 51	3.4 3.3 3.9	1,180 1,150 1,340	8.0 8.1 8.2

a Includes equivalent of any carbonate (CO $_{\rm 3}$) present. b Less than 0.4 parts per million.

3705. RIO GRANDE BELOW OLD FORT QUITMAN, TEX.

LOCATION.--At gaging station at the rectified channel of the Rio Grande, 1.5 miles below Old Fort Quitman, Hudspeth County, and 81.1 river miles below the American Dam at El Paso. DRAINAGE AREA.--32,035 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: 1933 to 1959.

REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids	Hard as Co		Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₅)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pH
October 1958	0	193																					
November	4	21.7			178	43	442		279	613	522		1.9	0.48	2,030	2.76		620	391	61	7.7	3,070	8.0
December	5	4.9			246	62	623		293	744	879		3.1	.50	2.843	3.87		867	627	61	9.2	4,280	7.8
January 1959	4	.5	14		643	169	1,410	18	290	1,200	2,760	0.8	1.2	.48	7,013	9.54		2,300	2,060	57	13	9,970	7.8
February	4	.2			694	188	1,490		256	1,220	3,030		1.2	.54	7,550	10.3		2,510	2,300	56	1.3	10,600	7.9
March	0	0				1																	
April	0	0																					
May	0	26.9																					
June	0	2.6																					
July	1	20.3	12		165	8.6	6.7	6.6	140	340	4.6	.8	.6	.03	657	.89		448	333	3.1	.1	840	7.8
August	2	99.5			80	16	144		208	224	131		1.2	.20	755	1.03		264	93	54	3.8	1,150	8.0
September	3	4.1			424	137	1,630		253	1,720	2,260		1.2	.89	6,622	9.01		1,620	1,410	69	18	9,310	8.0

3715. RIO GRANDE AT UPPER PRESIDIO, TEX.

LOCATION.--At gaging station 7.8 river miles above the junction of the Rio Conchos, and about 10 miles northwest of Presidio, Presidio County, and 285.7 river miles below the American Dam at El Paso. DRAINAGE-AREA.--34,988 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).

RECORDS AVAILABLE.--Chemical analyses: 1935 to 1959.

REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids		iness aCO;	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₁)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
October 1958	16	225					95		143		96				571	0.78		240	122	46	2.7	918	
November	9	10.2	1				415		215		628				2,097	2.85		734	558	55	6.7	3,200	
December	4	.6					1,150		232		2,110				6,491	8.83		2,320	2,130	52	10	8,680	
January 1959	0	0																					
February	0	0				1																	
March	0	0																					
April	0	0				-																	
May	0	1.5	1																				
June	3	20.4					59		171		23				386	.52		174	34	42	1.9	595	
July	5	25.7	14		88	5.7	58	5.9	151	227	11	0.8	3.1	0.06	528	.72		244	120	33	1.6	713	8.0
August	7	51.9					69		162		43				454	.62		196	63	43	2.1	689	2000
September	3	6.9				1	95		159		85				570	.78	1	230	100	47	2.7	886	i .

3750. RIO GRANDE NEAR JOHNSON RANCH, TEX.

LOCATION.--At gaging station about 2 miles upstream from Johnson Ranch, Brewster County, 14 miles downstream from Castolon, and 392.9 river miles below the American Dam at El Paso. DRAINAGE AREA.--70,715 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).

RECORDS AVAILABLE.--Chemical analyses: 1948 to 1959.

REPHARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids		dness aCO ₃	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₂)	fate (SO ₄)	ride (Cl)	ride (F)	trate (NO _z)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
October 1958	0	18,800																					
November	5	2,230					127		200		87				892	1.21		384	220	42	2.8	1,270	
December	5	1,030					174		197		122				1,154	1.57		461	300	45	3.5	1,590	
January 1959	4	742	26		149	23	1.79	7.8	210	501	119	1.7	5.6	0.36	1,163	1.58		467	294	45	3.6	1.610	7.8
February	5	462			:		217		190		163				1,340	1.82		506	351	48	4.2	1,860	
March	7	345					229		153		1 72				1,377	1.87		488	362	51	4.5	1,890	
April	6	285					229		153		174				1,363	1.85		488	362	51	4.5	1,900	
May	8	512					157		162		103				978	1.33		371	238	48	3.6	1,380	
June	8	620					157		156		102				989	1.35		376	248	48	3.5	1,400	
July	9	1,290	24		111	10	116	7.0	168	342	67	1.3	.6	.23	792	1.08		320	182	43	2.8	1,120	7.8
August	7	2,040					69		151		33				627	.85		298	174	34	1.7	869	
September	9	2,360					76		183		46				544	.74		239	89	41	2.1	799	

3775. RIO GRANDE AT LANGTRY, TEX.

LOCATION. --At gaging station at Langtry, Val Verde County, 24.1 miles above the confluence with the Pecos River, and 614.1 river miles below the American Dam at El Paso.
DRAINAGE AREA. --84,795 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).
RECORDS AVAILABLE. --Chemical analyses: 1944 to 1959.
REMARKS. --Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia	ssolved so	lids	Hard as Co	iness cCO,	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₁)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
October 1958	5	21,700			68	6.6	37		153	123	1.7		4.3	0.11	363	0.49		196	72	29	1.2	561	7.8
November	4	3,090			105	13	89		183	270	61		1.9	.16	681	.93		318	168	38	2.2	1,000	8.1
December	5	1,360			121	22	138		186	398	101		4.3	.30	943	1.28		394	242	43	3.0	1,320	7.8
January 1959	4	1,070	22		118	22	134	6.3	194	378	95	1.3	4.3	.29	915	1.24		386	226	43	3.0	1,300	7.9
February	4	795			119	24	137		189	382	104		3.7	.20	916	1.25		396	242	43	3.0	1,320	8.0
March	3	643			108	26	139		173	372	106		1.9	.32	914	1.24		374	233	45	3.1	1,310	7.9
April	5	566			97	25	127		160	341	101		1.2	.24	831	1.13		347	216	44	3.0	1,230	8.0
May	3	1,110		1	76	11	100		177	237	44		1.2	.14	602	.82		234	89	48	2.9	886	8.0
June	4	1,130		1	89	13	75		165	238	50		1.9	.15	585	.80		278	142	37	2.0	869	8.0
04		-,,,,,,,																					
July	6	2,360	18		94	10	72	5.5	183	222	39	1.0	1.2	.13	570	.78		276	126	36	1.9	834	7.9
August	4	2,160			97	12	89		180	250	53		1.2	.20	661	.90		292	145	40	2.3	945	7.9
September	4	3,200			78	8.6	53		179	154	33		3.1	.16	450	.61		229	82	34	1.5	669	8.0

Water temperatures: March 1933 to September 1939.

EXTREMES, 1958-59.--Dissolved solids: Maximum, 6,220 ppm Oct. 1-31; minimum, 4,240 ppm Nov. 23-30.

Hardness: Maximum, 1,860 ppm Sept. 1-30; minimum, 1,510 ppm Nov. 1-22.

Specific conductance: Maximum daily, 10,600 micromhos Oct. 3; minimum daily, 5,660 micromhos Nov. 28.

Water temperatures: Maximum, 79% on many days during August and September; minimum, 44% on several days in January. EXTREMES, 1937-59.--Dissolved solids: Maximum, 15,600 ppm Sept. 17-30, 1953; minimum, 1,090 ppm June 1-2, 1948. Hardness: Maximum, 3,430 ppm July 1-31, Oct. 1-16, 1953; minimum, 602 ppm June 1-2, 1948. Specific conductance: Maximum daily, 24,200 micromhos Sept. 28, 30, 1953; minimum daily, 1,610 micromhos June 2, 1948.

Water temperatures (1953-59): Maximum, 81°F Aug. 1-4, 1958; minimum, 40°F on several days during winter months.

REMARKS. --Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for gaging station near Orla for water year October 1958 to September 1959 given in Water-Supply Paper 1632. Mean discharge values reported below have been adjusted to exclude inflow from Salt (Screwbean) Draw which enters Pecos River between sampling point and gaging

	Mean dis-	Silica	Iron	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		solved so	132		iness aCO ₃	Per-	So- dium	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	(Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
Oct. 1-31, 1958 Nov. 1-22	3.23 4.00	18 21		400 398	135 125		570 290	175 179	1,310 1,280	2,600 2,010				6,220 5,210	8.46 7.09	54.2 56.3	1,550 1,510	1,410 1,360	70 65	18 14	9,670 8,000	7.2 6.8
Nov. 23-30 Dec. 1-31	3.40 3.97	1.5 1.5		418 448	116 120		393 913	143 164	1,340	1,380 1,360		4.0 4.0		4,240 4,420	5.77 6.01	38.9 47.4	1,520 1,610	1,400 1,480	56 55	10 9.9	6,280 6,350	7.2 8.1
Jan. 1-31, 1959 Feb. 1-28	3.72 4.19	14 13		455 455	141 138	916 1,1	24	166 149	1,490 1,390	1,430 1,640		2.5 3.0		4,550 5,010	6.19 6.81	45.7 56.7	1,720 1,700	1,580 1,580	53 58	9.6 12	6,520 6,990	8.1
Mar. 1-31 Apr. 1-30	81.2 200	12 11		445 448	131 127	1,010	30	143 139	1,490 1,470	1,530 1,620		3.0 2.0		4,680 4,790	6.36 6.51	1,030 2,590	1,650 1,640	1,530 1,530	57 57	11 11	6,740 6,890	8.1 7.6
May 1-31 June 1-30	4.11 164	14 14		470 448	157 132		310 120	152 141	1,610	2,030 1,720		2.5		5,670 5,010	7.71 6.81	62.9 2,220	1,820 1,660	1,690 1,550	61 60	13 12	8,310 7,190	7.3 7.2
July 1-31 Aug. 1-31 Sept. 1-30	172 261 108	14 17 17		450 482 505	118 153 145	1,2	200 390	135 130 130	1,500 1,620 1,700	1,690 1,870 2,130		1.0		4,970 5,410 5,950	6.76 7.36 8.09	2,310 3,810 1,740	1,610 1,830 1,860	1,500 1,720 1,750	60 59 61	12 12 14	7,040 7,470 8,460	7.1 7.5 7.7
Weighted average	84.4	14		463	135	1,1	150	136	1,550	1,760		2.2		5,140	6.99	1,170	1,710	1,600	59	12	7,280	

4465. PECOS RIVER NEAR GIRVIN, TEX.

Water-Supply Paper 1632.

	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-		solved sol		Hard as C	iness aCO ₁	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO _z)	Iron (Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
Oct. 1-13, 1958	68.2					1,960		163	1,980	3,020							2,210	2,080	66	18	11,500	7.5
Oct. 14-31	35.7					2,790		163	2,740	4,270							3,000	2,870	67	22	15,500	7.5
Nov. 1-30	33.0					3,490		150	3,280	5,430							3,670	3,550	67	25	18,700	7.4
Dec. 1-31	30.5		3			3,910		177	3,540	6,000							3,790	3,640	69	28	20,200	7.8
Jan. 1-31, 1959	31.2					4,020		200	3,590	6,190							3,960	3,800	69	28	20,600	7.6
Feb. 1-28	30.5					3,890		188	3,660	6,140							4,040	3,890	68	2.7	20,500	8.0
Mar. 1-31	26.1					4,330		172	3,890	6,780							4,230	4,090	69	29	22,200	8.1
Apr. 1-30	24.1					4,510		118	3,940	7,070							4,330	4,230	69	30	22,700	7.2
May 1-31	24.3	5.4		733	533	4,120		67	3,750	6,440				15,600	21.4	1,020	4,020	3,960	69	28	21,200	7.2
June 1-30	16.8	7.2		615	451	3,080		49	3,100	4,960				12,200	16.7	553	3,390	3,350	66	23	17,200	7.2
July 1-17	23.8	6.3		655	412	3,470		54	3,360	5,280				13,200	18.1	848	3,330	3,280	69	26	17,900	6.9
July 18-24	43.1	1.9	1	460	186	1,390		80	1,830	2,150				6,060	8.24	705	1,910	1,850	61	14	8,640	8.0
July 25-31	14.0	4.7		478	317	2,370		94	2,520	3,610				9,350	12.8	353	2,500	2,420	67	21	13,100	7.0
Aug. 1-31	10.3					4,690		53	4,420	7,360							4,730	4,690	68	30	22,700	7.3
Sept. 1-30	10.3					4,960		62	4,590	7,910							4,940	4,890	69	31	23,900	7.2
Weighted average	26.1					3,620		138	3,370	5,640							3,670	3,560	68	26	18,900	

PECOS RIVER NEAR SHUMLA, TEX.

LOCATION. -- At gaging station about 6 miles north of Shumla, Val Verde County, 13.0 miles upstream from the Pecos High Bridge and 18.5 river miles upstream from the confluence with the Rio Grande.

DRAINAGE AREA. -- 35,162 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).

RECORDS AVAILABLE.—C-Chemical analyses: October 1954 to September 1959.

REMARKS.—Chemical analyses by U. S. Department of Agricultural Research Service, U. S. Salinity Laboratory, Riverside Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

Y	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dis	ssolved so	lids		iness aCO ₃	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO _t)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pH
October 1958 November December	3 5 5	533 282 241	==		134 140 156	48 60 67	282 360 416		169 180 188	354 375 425	463 603 696		6.2 5.6 3.7	0.15 .20 .25	1,449 1,718 1,999	1.97 2.34 2.72		530 596 667	392 449 513	54 57 58	5.3 6.4 7.0	2,290 2,790 3,150	7.9 8.1 7.9
January 1959 February March	4 4 5	215 202 187	5		170 171 175	75 81 82	475 510 517	7.0	187 177 174	473 500 496	798 859 878	0.8	3.7 3.7 2.5	.23 .28 .27	2,212 2,351 2,484	3.01 3.20 3.38		732 760 772	578 616 629	58 59 59	7.6 8.0 8.1	3,530 3,730 3,800	7.9 8.0 7.9
April May June	4 4 5	174 227 262			163 154 158	77 76 77	502 500 536		156 137 142	487 476 506	840 840 880		1.9 .6 .6	.24 .20 .26	2,268 2,300 2,366	3.08 3.13 3.22		724 696 710	596 584 593	60 61 62	8.1 8.2 8.7	3,650 3,590 3,760	3.0 7.9 8.0
July August September	4 4 5	633 258 433	14		104 99 82	40 42 26	262 255 149	5.9	153 159 160	257 253 144	430 418 248	.8	1.2 3.1 2.5	.13 .09 .10	1,257 1,229 803	1.71 1.67 1.09		424 421 308	300 291 177	57 57 51	5.5 5.4 3.7	2,060 1,980 1,310	7.9 8.2 8.0

4590. RIO GRANDE AT LAREDO, TEX.

LOCATION.--At gaging station at railroad bridge between Laredo, Webb County, and Nuevo Laredo, Tamaulipas, 884.3 miles below the American Dam at El Paso. DRAINAGE AREA.--135,976 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: July 1955 to September 1959.

DRAIRAGE AREA. -- 133,976 square miles (united States and mexico; from international soundary and water commission water Sufferin Adminer 207.

RECORDS AVAILABLE. -- Chemical analyses: July 1955 to September 1959.

REMARKS. -- Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved so	lids	Hard as Co	dness aCO,	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
October 1958	31	29,630					39		153		27				379	0.52		202	78	29	1.2	570	
November	30	8,220					59		168		57				497	.68		250	112	34	1.6	755	
December	31	4,330					81		180		87				593	.81		282	135	38	2.1	908	2.5
January 1959	31	3,560	12		85	20	87	3.5	183	184	99	0.8	6.8	0.13	619	.84		294	144	39	2.2	958	7.8
February	28	3,150					90		159		112				601	.82		276	146	42	2.4	948	
March	31	2,470					115		161		104				662	.90		284	152	47	3.0	1,020	
April	30	2,180					97		162		123				629	.86		282	150	43	2.5	995	
May	31	2,870					91		165		110				609	.83		270	134	42	2.4	939	
June	30	3,770		1			69		156		85				473	.64		235	108	39	2.0	777	
July	31	4,440	22		72	12	67	4.7	153	148	69	.8	5.0	.11	496	.67		228	103	38	1.9	758	7.9
August	31	2,880					81		153		88				546	.74		237	112	43	2.3	837	
September	30	4,750					54		162		43				429	.58		215	82	35	1.6	660	

RIO GRANDE BELOW FALCON DAM, TEX.

LOCATION.--Immediately below Falcon Dam, Starr County, 2.5 miles upstream from gaging station near Chapeno, 970.9 river miles below the American Dam at El Paso.
DRAINAGE AREA.--164,482 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).
RECORDS AVAILABLE.--Chemical analyses: July 1955 to September 1959.
REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

	Number	Mean		•	Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved sol	ids	Hard as C	iness cO ₁	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO ₄)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	рН
October 1958	12	32,500			58	9.4	49		136	103	52		1.9	0.15	367	0.50		184	72	37	1.6	591	7.8
November	1.2	19,000			60	8.9	40		137	98	39		2.5	.10	347	.47		186	73	32	1.3	551	8.0
December	6	7,570			63	9.6	40		149	105	36		4.3	.11	360	.49		196	74	31	1.2	561	7.9
January 1959	12	3,460	6		69	9.1	40	3.9	159	105	39	0.8	5.0	.07	375	.51		209	78	29	1.2	589	7.8
February	10	6,030			66	12	42		162	109	41		5.0	.13	388	.53		215	82	30	1.2	610	8.0
March	12	5,640			72	9.4	44		165	106	46		4.3	.14	421	.57		219	84	30	1.3	636	7.8
April	12	3,110			74	13	51		168	129	53		3.7	.18	411	.56		238	100	32	1.4	688	8.0
May	12	5,290			73	14	57		160	143	60		3.7	.11	483	.66		238	107	34	1.6	727	7.8
June	10	4,250			72	14	62		153	150	68		3.1	.09	468	.64		238	112	36	1.8	750	7.9
July	13	3,720	13		69	16	69	3.9	138	160	79	.6	1.2	.13	504	.69		236	123	38	2.0	782	7.8
August	9	1,950			66	16	72		125	171	82	1 12	.6	.15	510	.69		231	128	40	2.1	784	7.9
September	14	4,600			65	16	74		126	165	82		1.2	.14	494	.67		228	124	41	2.1	788	7.9

RIO GRANDE AT FORT RINGGOLD, RIO GRANDE CITY

LOCATION, --At gaging station about 1 mile downstream from Rio Grande City, Starr County, 3.9 miles below the mouth of the Rio San Juan, and 1,014.3 river miles below the American Dam at El Paso.

DRAINAGE AREA.--180,396 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).

RECORDS AVAILABLE.--Chemical analyses: January to September 1959.

REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1938 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

Chemical analyses, in parts per million, January to September 1959

	Number of				Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	D	ssolved so	lids	Hard as Co	dness aCO ₁	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₁)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pН
lanuary 1959	31	4,130	6		74	9.1	50	4.3	164	113	53	0.6	5.6	0.15	419	0.57		221	87	32	1.5	6.56	7.9
ebruary arch	28 31	6,560 6,150			62 73	12	45 48		160 165	113 117	45 51		5.0	.07	399 435	.54		215 231	84 96	31 31	1.3	621 638	7.8
pri!	30	3,240			78	13	60		173	136	69		3.7	.11	481	.65		247	106	35	1.7	755	7.8
ay une	31 30	5,180 4,210			75 75	14	62 69		163 160	146 155	67 78		3.1	.09	501 501	.68		246 251	112 120	35 38	1.7	763 803	7.9
ul y	31	3,800	12		71	16	73	4.3	145	164	80	.6	2.5	.16	516	.70		242	123	39	2.1	810	7.9
August September	31 27	2,130 4,630			72 68	16	86 76		146 136	169 166	99 85		1.9	.16	553 511	.75		246 236	126 124	43	2.4	876 809	8.1

RIO GRANDE AT ANZALDUAS DAM

LOCATION. -- At gaging station 0.5 mile below Anzalduas Dam, Hidalgo County, 12.2 miles upstream from Hidalgo, and 1,077.1 river miles below the American Dam at El Paso.
DRAINAGE AREA. -- 182,138 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28).
RECORDS AVAILABLE. -- Chemical analyses: March to September 1959.
RECORDS analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29.

Chemical analyses, in parts per million, March to September 1959

	Number	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	issolved so	lids	Hare as C	iness cCO ₃	Per-	So- dium	Specific conduct-	
Month	of Samples	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (CI)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	(micro- mhos at 25° C)	pH
March 1959 April May	9 8 9	3,830 762 987	12		73 87 81	13 18 18	71 115 115	5.1	154 167 159	134 176 180	87 159 148	0.6	3.7 3.7 3.1	0.15 .24 .25	520 692 678	0.71 .94 .92		234 292 276	108 155 146	39 46 48	2.0 2.9 3.0	796 1,110 1,070	7.8 8.0 8.0
June July August September	8 8 8 7	1,300 603 15.3 1,350	13		85 83 80 74	20 21 21 19	129 130 143 109	4.7	159 154 138 141	198 208 206 193	174 168 194 137	.6	1.9 1.2 .6	.28 .30 .34 .19	721 746 765 628	.98 1.01 1.04 .85		295 292 286 264	164 166 173 148	49 49 52 47	3.3 3.3 3.7 2.9	1,180 1,180 1,230 1,010	7.9 7.8 8.0 8.1

MISCELLANEOUS ANALYSES OF STREAMS IN RIO GRANDE BASIN IN TEXAS RIO GRANDE BASIN--Continued

				_				-	-		-	-	-									
	Mean		_	Cal-	Mag-	Š	Po-	Bicar-	Sul-	Chlo-	Fluo-	N:	Bo-	Diss (resid	Dissolved solids (residue at 180°C)	ds 0°c)	Hardness as CaCO,	CO	Per-	So.	Specific conduct-	
Date of collection	charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	sium (Mg)	dium (Na)	sium (K)	bonate (HCO,)	fate (SO,)	ride (CI)	ride (F)	(NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	H.
									LAKE WA	WALK NEAR DEL RIO	EL RIO											
20 1958		1.3	0 03	75	2 2	7	2	761	7 9	78 003 87	0	7		306		0.28	841	0	0	. 0	333	