TEXAS WATER COMMISSION Joe D. Carter, Chairman O. F. Dent, Commissioner H. A. Beckwith, Commissioner BULLETIN 6205 CHEMICAL COMPOSITION OF TEXAS SURFACE WATERS, 1959 Ву L. S. Hughes and Wanda Shelby U. S. Geological Survey Prepared in cooperation with the Geological Survey United States Department of the Interior and Others ## TABLE OF CONTENTS | | Page | |---|------| | INTRODUCTION | 1 | | COOPERATION | 1. | | COLLECTION AND ANALYSIS OF SAMPLES | 2 | | Texas Water Commission-U. S. Geological Survey Sampling Program | 2 | | International Boundary and Water Commission-U. S. Department of Agriculture Sampling Program | 2 | | EXPRESSION OF RESULTS | 3 | | SURFACE-WATER RUNOFF AND CHEMICAL-QUALITY CONDITIONS | 4 | | Arkansas River Basin | 4 | | Red River Basin | 7 | | Sabine River Basin | 7 | | Neches River Basin | 7 | | Trinity River Basin | 9 | | Brazos River Basin | 9 | | Colorado River Basin | 10 | | Guadalupe River Basin | 11 | | Nueces River Basin | 11 | | Rio Grande Basin | 11 | | TABLES OF ANALYSES | 17 | | Arkansas River Basin | 19 | | Canadian River near Amarillo | 19 | | Miscellaneous Analyses | 20 | | | Page | |--|------| | Red River Basin | 21 | | Salt Fork Red River near Hedley | 21 | | Little Wichita River near Henrietta | 22 | | Little Wichita River near Ringgold | 23 | | Red River near Gainesville | 24 | | Red River at Denison Dam near Denison | 26 | | South Sulphur River near Cooper | 27 | | Miscellaneous Analyses | 28 | | Sabine River Basin | 33 | | Sabine River near Tatum | 33 | | Sabine River near Ruliff | 34 | | Miscellaneous Analyses | 35 | | Neches River Basin | 36 | | Angelina River near Lufkin | 36 | | Neches River at Evadale | 37 | | Miscellaneous Analyses | 38 | | Trinity River Basin | 39 | | Trinity River near Rosser | 39 | | Richland Creek near Fairfield | 40 | | Trinity River at Romayor | 42 | | Trinity River near Moss Bluff | 43 | | Old River near Cove | 44 | | Trinity River at Anahuac | 45 | | Trinity Bay at Mouth of Trinity River near Anahuac | 46 | | Miscellaneous Analyses | 48 | | San Jacinto River Basin | 49 | | Missellaneous Analyses | 40 | | | Page | |--|------| | Brazos River Basin | 50 | | Double Mountain Fork Brazos River near Aspermont | 50 | | Croton Creek near Jayton | 51 | | Salt Flat Creek at Weir B near Aspermont | 52 | | Salt Croton Creek at Weir C near Aspermont | 53 | | Salt Croton Creek at Weir D near Aspermont | 54 | | Haystack Creek near Aspermont | 55 | | Salt Croton Creek near Aspermont | 56 | | Salt Croton Creek at Mouth near Aspermont | 57 | | Salt Fork Brazos River near Aspermont | 58 | | Brazos River at Seymour | 59 | | Hubbard Creek near Breckenridge | 60 | | Salt Creek at Olney | 61 | | Salt Creek near Newcastle | 62 | | Brazos River at Possum Kingdom Dam near Graford | 63 | | Brazos River at Whitney Dam near Whitney | 64 | | Navasota River near Bryan | 65 | | Brazos River at Richmond | 66 | | Miscellaneous Analyses | 67 | | San Bernard River Basin | 72 | | Miscellaneous Analyses | 72 | | Colorado River Basin | 73 | | Colorado River near Ira | 73 | | Colorado River at Colorado City | 74 | | Beals Creek near Westbrook | 75 | | Colorado River near Silver | 77 | | Colorado River near San Saba | 79 | | | P a ge | |---|---------------| | Colorado River at Austin | 80 | | Colorado River at Wharton | 81 | | Miscellaneous Analyses | 82 | | Lavaca River Basin | 84 | | Miscellaneous Analyses | 84 | | Guadalupe River Basin | 85 | | Guadalupe River at Victoria | 85 | | San Antonio River at Goliad | 86 | | Miscellaneous Analyses | 87 | | Mission River Basin | 88 | | Miscellaneous Analyses | 88 | | Aransas River Basin | 88 | | Miscellaneous Analyses | 88 | | Nueces River Basin | 89 | | Nueces River near Mathis | 89 | | Miscellaneous Analyses | 90 | | Rio Grande Basin | 91 | | Rio Grande near El Paso | 91 | | Rio Grande below Old Fort Quitman | 92 | | Rio Grande at Upper Presidio | 93 | | Rio Grande near Johnson Ranch | 94 | | Rio Grande at Langtry | 95 | | Pecos River below Red Bluff Dam near Orla | 96 | | Pecos River near Girvin | 97 | | Pecos River near Shumla | 98 | | Rio Grande at Laredo | 99 | | Rio Grande below Falcon Dam | 100 | | | | Page | |----|--|---------| | | Rio Grande at Fort Ringgold, Rio Grande City | 101 | | | Rio Grande at Anzalduas Dam | 102 | | | Miscellaneous Analyses | 103 | | | TABLE | | | 1. | Mean discharge and maximum, minimum and weighted average concentrations of dissolved solids for the 1959 water year for stations operated under the Texas Water CommissionU. S. Geological Survey sampling program | 6 | | | ILLUSTRATIONS | | | | <u>Figures</u> | | | 1. | Mean discharge at selected stations for the 1958 and 1959 water years and for the period of record | 5 | | 2. | Duration curves for dissolved solids for four selected stations, 1959 water year | 8 | | 3. | Periods of operation of quality-of-water sampling stations in Texas | 13 | | | <u>Plate</u> | | | | | Follows | | 1. | Quality-of-water stations, water year 1959 | Page 12 | # CHEMICAL COMPOSITION OF TEXAS SURFACE WATERS, 1959 #### INTRODUCTION This report contains data on the chemical quality of the surface waters of Texas in the water year 1959. Results are presented for chemical analyses of water samples obtained daily from selected points throughout the State and also the results for other samples obtained at various points during the period October 1, 1958, to September 30, 1959. All natural water contains dissolved mineral matter. Water in contact with rocks and soils, even for only short periods of time, will dissolve some of the mineral and organic substances. The chemical character of stream waters is dependent on several factors, such as type of soil and rock with which the water is in contact, length of time of the contact, climatic conditions, and activities of man. In Texas, the chemical composition of waters varies widely from stream to stream and, often, from point to point on a particular stream. The records of chemical analysis of surface waters in the report serve as a basis for determining the suitability of the waters for industrial, agricultural, and domestic uses insofar as such use is affected by the dissolved mineral matter in the waters. ## COOPERATION This is the fourteenth in a series of annual reports covering surface waters of Texas prepared by the U. S. Geological Survey in cooperation with the Texas Water Commission (formerly the Texas Board of Water Engineers). In addition to the annual reports, an earlier compilation was issued providing data for the period 1938 to 1945. These reports may be obtained by writing the Texas Water Commission, Austin, Texas. Other agencies cooperating in the collection of these data were the Brazos River Authority, the Canadian River Municipal Water Authority, the Chambers-Liberty Counties Navigation District, the cities of Fort Worth and Wichita Falls, the Colorado River Municipal Water District, the Greenbelt Municipal and Industrial Water Association, the Lower Colorado River Authority, the Lower Neches Valley Authority, the Red Bluff Water Power Control District, the Sabine River Authority, the Tarrant County Water Control and Improvement District No. 1, the Texas Electric Service Company, the U. S. Corps of Engineers, the West Central Texas Municipal Water District, and the Wichita County Water Control and Improvement Districts. Analyses for the Red River near Gainesville were made by the Oklahoma City office of the U. S. Geological Survey, in cooperation with the Oklahoma Water Resources Board. Records for ten stations in the Rio Grande basin have been furnished by the U. S. Department of Agriculture, in cooperation with the International Boundary and Water Commission. ## COLLECTION AND ANALYSIS OF SAMPLES The samples for which data are given were collected from October 1, 1958, to September 30, 1959. Descriptive statements are given for each sampling station for which a regular series of chemical analyses have been made. These statements give location of the stream sampling station, drainage area of the stream above the station, length of time for which records are available, extremes of dissolved solids, hardness, and water temperature, and other pertinent data. Records of discharge of the stream at or near the sampling point for the sampling period are included in most tables of analyses. ## Texas Water Commission-U. S. Geological Survey Sampling Program During the period covered by this report samples were collected daily at 39 points on Texas streams and twice weekly at four sampling points in Trinity Bay near the mouth of the Trinity River. Samples were collected twice monthly at seven points in a small area on Salt Croton and Haystack Creeks near Aspermont. In addition to the data on chemical quality included in this report, temperature date for streams at 31 of the sampling stations and sediment data for one of the sampling stations are available in the files of the U. S. Geological Survey, Austin, Texas. Records of chemical quality of streams at 52 additional sampling points for varying lengths of time have been published in previous reports of this series. The locations of the active and inactive stations are shown on the accompanying map, Plate 1, and the periods of operation of all the stations are shown on the bar graph (Figure 3). The seven sampling points on Salt Croton and Haystack Creeks are indicated as a single location (42) on the map. Water samples were usually obtained daily at or near a Geological Survey stream-gaging station. Specific conductance was
determined on all samples. Composite samples were usually made for 10-day periods by using equal volumes of successive samples having similar conductances. For some streams that are subject to sudden and large changes in chemical composition or concentration, samples were composited for shorter periods on the basis of the concentration of the daily samples. At several sampling stations where changes in chemical composition occur gradually, daily samples for an entire month were composited. ## International Boundary and Water Commission-U. S. Department of Agriculture Sampling Program This report includes chemical quality records for 10 stations in the Rio Grande basin where samples were collected by the International Boundary and Water Commission and analyses made by the U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, California. At 3 of the stations, samples were collected daily; at the others, from 1 to 16 samples were collected each month. A single monthly composite sample was made for analysis by taking from each individual sample an amount of water proportional to the volume of river flow represented by the sample. Results of these analyses are also published in equivalents per million in Water Bulletin Number 29 of the International Boundary and Water Commission, together with stream flow and related data. #### EXPRESSION OF RESULTS The chemical constituents given in the tables of analyses are reported in parts per million. A part per million is a unit weight of a constituent in a million unit weights of water. Values for other characteristics are given in appropriate units. Mean discharge is reported in cfs (cubic feet per second). A cubic foot per second is the rate of discharge of a stream whose channel is 1 square foot in cross-sectional area and whose average velocity is 1 foot per second. Dissolved solids are reported in tons per day, tons per acre-foot, and parts per million. Values reported for dissolved solids less than 1,000 ppm (parts per million) are residues on evaporation and for more than 1,000 ppm are sums of determined constituents unless noted otherwise. In obtaining the sum, the bicarbonate is calculated as carbonate by dividing by 2.03. For those analyses in which a calculated value as sodium is shown for sodium and potassium, this value, in equivalents per million, was used in computing the percent sodium and sodium-adsorption ratio. For those analyses in which a determined value for sodium is reported separately, this value is used in computing the percent sodium and sodium-adsorption ratio. Sodium-adsorption ratio (SAR) is used to express the relative activity of sodium ions in exchange reactions with the soil. $$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$ where the concentrations of the constituents are expressed in equivalents per million. Waters are divided into four classes with respect to sodium hazard depending upon the SAR value and the specific conductance. At a conductance of 100 micromhos per centimeter the dividing points are at SAR values of 10, 18, and 26, but at 5,000 micromhos the corresponding dividing points are at SAR values of approximately 2.5, 6.5, and 11. Specific conductance, a measure of a water's ability to conduct an electric current, is reported in micromhos per centimeter at 25°C. A water having a pH of 7.0 is considered to be neutral; less than 7.0 increasingly alkaline. Sodium and potassium are reported as sodium unless listed separately in the tables. Hardness due to calcium and magnesium and noncarbonate hardness are reported as calcium carbonate $(CaCO_3)$. The weighted averages of analyses are reported for daily sampling stations for which discharge records are available. The weighted-average analysis represents the approximate composition of water that would be found in a reservoir containing all the water passing a given station during the year, after thorough mixing in the reservoir. The samples were analyzed according to methods used by the U. S. Geological Survey. $\underline{1}\!\!\!/$ ## SURFACE-WATER RUNOFF AND CHEMICAL-QUALITY CONDITIONS Rainfall and surface-water runoff were deficient over much of Texas during the 1959 water year. Drought conditions beginning in West Texas in October 1958 had generally spread across the state by March 1959. Only in the area drained by the upper Brazos and Guadalupe Rivers was the runoff excessive. Mean discharges for selected stations for the 1958 and 1959 water years, as well as for the period of record, are shown in Figure 1. On many streams changes in dissolved-solids concentration are closely related to the rate of discharge, and low flows are likely to be considerably more mineralized than are flood flows in the same stream. However, for streams whose discharge is controlled by reservoirs, the chemical composition of the water may remain relatively constant despite large fluctuations in discharge. Streams that are subject to pollution by oil fields or other sources of salts may show marked increases in dissolved solids at times when moderate storm runoff flushes oil-field wastes or salt residues from evaporation of water into the streams. In Table 1 are listed the mean discharges and the maximum, minimum and weighted-average concentrations of dissolved solids for the 1959 water year for those stations operated under the Texas Water Commission-U. S. Geological Survey sampling program. ## Arkansas River Basin Rainfall in the Arkansas River basin in Texas was below normal during the 1959 water year and runoff of the Canadian River near Amarillo was only about 40 percent of the 22-year average. Excessive runoff occurred only in the month of August, when the average discharge was 153 percent of the long-term monthly mean. During the remainder of the year, discharge ranged from 4 to 71 percent of the long-term monthly average. The decrease in runoff was accompanied by an increase in the weighted average of dissolved-solids concentrations from 527 ppm in the 1958 water year to 649 ppm in 1959. ^{1/} Rainwater, F. H., and Thatcher, L. L., 1960, Methods of collection and analysis of water samples: U. S. Geological Survey Water-Supply Paper 1454. American Public Health Association and others, 1955, Standard methods for the examination of water, sewage and industrial wastes. Figure 1.--Mean discharge at selected stations for the 1958 and 1959 water years and for the period of record. Table 1.--Mean discharge and maximum, minimum, and weighted average concentrations of dissolved solids for the 1959 water year for stations operated under the Texas Water Commission--U. S. Geological Survey sampling program. | | Mean | D | issolved solids | (ppm) | |---|---|--|--|---| | Sampling station | discharge
(cfs) | Maximum | Minimum | Weighted
average | | ARKANSAS RIVER BASIN Canadian River near Amarillo | 188 | 2,130 | 394 | 649 | | RED RIVER BASIN Salt Fork Red River near Hedley Little Wichita River near Henrietta Little Wichita River near Ringgold Red River near Gainesville Red River at Denison Dam near Denison South Sulphur River near Cooper | 44.8

1,534
2,298
91.2 | 1,810
1,430
2,810
4,690
1,140
452 | 563
63
38
472
1,020 | 218
151
1,640
1,100 | | SABINE RIVER BASIN Sabine River near Tatum Sabine River near Ruliff | 1,683
6,723 | 883
212 | 92
43 | 188
109 | | NECHES RIVER BASIN Angelina River near Lufkin Neches River at Evadale | 994
5,162 | 186
156 | 63
52 | 111
89 | | TRINITY RIVER BASIN Trinity River near Rosser Richland Creek near Fairfield Trinity River at Romayor Trinity River near Moss Bluff Old River near Cove Trinity River at Anahuac Trinity Bay near Anahuac | 664
4,909

 | 745
4,260
666
693
585
 | 174
140
132
143
105 | 425

249

 | | BRAZOS RIVER BASIN Double Mountain Fork Brazos River near | | 2.00 | n n | , | | Aspermont
Croton Creek near Jayton
Salt Fork Brazos River near Aspermont
Hubbard Creek near Breckenridge
Salt Creek at Olney
Salt Creek near Newcastle | 219

126
47.9
.36
3.12 | 4,840

99,200
2,420
3,670
2,170 | 715

2,130
143
101
51 | 999

5,020
325
463
205 | | Brazos River at Possum Kingdom Dam
near Graford
Brazos River at Whitney Dam near | 458 | 1,370 | 996 | 1,130 | | Whitney
Navasota River near Bryan
Brazos River at Richmond | 681
529
4,450 | 947
928
718 | 845
72
171 | 893
226
323 | | COLORADO RIVER BASIN Colorado River near Ira Colorado River at Colorado City Beals Creek near Westbrook Colorado River near Silver Colorado River near San Saba Colorado River at Austin Colorado River at Wharton | 2.59
20.2
15.9
35.7
593
1,631
2,372 | 39,100
19,000
8,440
12,800
818
287
302 | 255
385
180
314
220
221 | 4,990
2,010
680
1,270
315
249
231 | | GUADALUPE RIVER BASIN
Guadalupe River at Victoria
San Antonio River at Goliad | 1,580
597 | 376
808 | 216
159 | 303
457 | | NUECES RIVER BASIN
Nueces River near Mathis | 829 | 362 | 237 | 274 | | RIO GRANDE BASIN Pecos River below Red Bluff Dam near Orla Pecos River near Girvin | a 84.4
26.1 | 6,220 | 4,240 | 5,140 | a Discharge values adjusted to exclude inflow from Salt (Screwbean) Draw which enters Pecos River between sampling point and gaging station. Extremely low flow is maintained by drainage of sewage effluent down East Amarillo Creek from the Amarillo
sewage disposal plant, and analyses often show nitrate concentrations in excess of 50 ppm. ## Red River Basin The water of the Red River upstream from Lake Texoma, except during flood periods, is of poor quality because of the presence of oil-field brines and drainage from natural deposits of salt and gypsum. At the Gainesville station just upstream from Lake Texoma, the weighted average of dissolved-solids concentrations for the 1959 water year, in spite of decreased runoff, was 1,640 ppm as compared with 1,950 ppm in the 1958 water year. In 1958 runoff was more evenly distributed throughout the entire year, with more time for the flow to come in contact with the rocks and soils, whereas in 1959 more than 75 percent of the runoff occurred in the three months, May to July. The effect was to bring about a lower weighted average of dissolved-solids concentrations in 1959. Below Lake Texoma, the water is of better quality. At Denison Dam, the dissolved-solids concentrations increased slowly from a minimum of 1,020 ppm in October to a maximum of 1,140 ppm in September. Two new sampling stations were established in the Red River basin in the 1959 water year. They were Little Wichita River near Ringgold and South Sulphur River near Cooper. A station on the Little Wichita near Henrietta, previously operated from December 1952 to January 1956, was re-established. The Cooper station shows water of good quality, with a range of dissolved-solids concentrations from 125 ppm to 452 ppm and a weighted average of 167 ppm. ## Sabine River Basin The Sabine River drains an area of high rainfall in East Texas and Western Louisiana. The water, except where polluted by oil-field or other industrial wastes, is almost always low in dissolved solids although often high in organic color and turbidity. Runoff at the Tatum station during 1959 was about 60 percent of the 20-year average. Excessive flooding occurred in May in the upper part of the basin as a result of spring rains. At the downstream station near Ruliff, runoff was about 75 percent of the 35-year average. The weighted average of dissolved-solids concentrations was 188 ppm at the Tatum station and 109 ppm at the Ruliff station. A duration curve for the Sabine River near Ruliff shows the percentage of time during which specified concentrations of dissolved solids were equaled or exceeded during the 1959 water year. (See Figure 2.) The curve shows that 200 ppm of dissolved solids was exceeded only 8 percent of the time. ## Neches River Basin The Neches River is similar to the Sabine River in that it also drains an area of high rainfall, and the water in the basin is usually of good quality except where polluted by oil-field or other industrial wastes. At the Evadale station, the streamflow was a record high for October as a result of September rains, Figure 2.--Duration curves for dissolved solids for four selected stations, 1959 water year. even though streamflow for the 1959 water year was deficient. Locally heavy runoff occurred after July 24 as a result of Hurricane Debra. The dissolved-solids concentrations ranged from a minimum of 52 ppm to a maximum of 156 ppm. The weighted average was 89 ppm. A duration curve for the Neches River at Evadale is given in Figure 2 and shows that for 46 percent of the 1959 water year the concentration of dissolved solids was 100 ppm or less. At the station upstream on the Angelina River near Lufkin, the weighted average of dissolved-solids concentrations was 111 ppm. ## Trinity River Basin Streamflow was generally deficient in the headwater areas of the Trinity River basin during the 1959 water year. However, on October 8, rainfall of up to six inches fell at Fort Worth and local flash floods occurred. At the Rosser station, streamflow for the 1959 water year was only 16 percent of that for the 1958 water year, and 24 percent of the 20-year average. The cities of Fort Worth and Dallas divert considerable water for municipal supply, of which about 60 percent is returned as sewage effluent. The effects of this sewage effluent on chemical quality were more pronounced because of the deficient streamflow. Nitrate concentrations ranged from 9.0 ppm to 57 ppm, with a weighted average of 22 ppm. Average discharge at Romayor during the 1959 water year was 4,909 cfs, as compared to the 35-year average of 7,389 cfs. Dissolved-solids concentrations ranged from a minimum of 132 ppm to a maximum of 666 ppm, with a weighted average of 249 ppm. A duration curve for the Trinity River at Romayor shows the percentage of time during which specified concentrations of dissolved solids were equaled or exceeded during the 1959 water year. (See Figure 2.) ## Brazos River Basin Quality of surface waters varies considerable in the Brazos River basin due to the wide range of geologic, climatic, and cultural factors present. In the upper part of the basin, minor tributaries contribute highly saline water to the Brazos River. Also, where rainfall is light, soluble minerals accumulate on rock and soil surfaces until they are flushed away by heavy rains. Thus, the runoff contains large concentrations of dissolved solids. In the lower part of the basin, where rainfall is heavier and the rocks are more completely leached, the water is less mineralized. Streamflow of the Double Mountain Fork Brazos River near Aspermont was 122 percent of the 30-year average. Dissolved-solids concentrations exceeded 3,000 ppm 76 percent of the year, yet the weighted average of dissolved-solids concentrations was only 999 ppm because of the improved quality of the water during periods of high runoff. At the Salt Fork Brazos River station near Aspermont, the weighted average decreased from 8,500 ppm in 1958 to 5,020 in 1959. The weighted average of dissolved-solids concentrations of the water discharged from Possum Kingdom Reservoir was 1,130 ppm as compared with 1,180 ppm in 1958. The monthly composites ranged from 996 ppm to 1,370 ppm. Water stored in Whitney Reservoir is generally of better quality than that stored in Possum Kingdom Reservoir because the intervening drainage area does not have sources of highly saline water as does the Brazos River above Possum Kingdom Reservoir. However, whereas the quality of the water released from Possum Kingdom Reservoir was somewhat better than in 1958, the weighted average of dissolved-solids concentrations of the water released from Whitney Reservoir increased from 604 ppm in 1958 to 893 ppm in 1959 due to deficient runoff between the two reservoirs. Water discharge of the Brazos River at Richmond was only about 60 percent of the average for the 39-year period of record. However, the disolved-solids concentrations ranged from a minimum of 171 ppm to a maximum of only 718 ppm, with a weighted average of 323 ppm. A duration curve for the station, showing the percentage of time during which specified concentrations of dissolved solids were equaled or exceeded during the 1959 water year, is given in Figure 2. Three new sampling stations were placed in operation in the Brazos River basin during the year. They were Croton Creek near Jayton, Brazos River at Seymour, and Navasota River near Bryan. ## Colorado River Basin Two new stream-gaging and sampling stations were placed in operation during November 1958 on Colorado River near Ira and Beals Creek near Westbrook. These two stations, together with those at Colorado City and Silver, provide information on the quality of water that would be available for storage in a proposed reservoir near Silver. Runoff from the area was deficient for the 1959 water year, and the water was saline much of the time. The flow at the Colorado City station was about 30 percent of the 13-year average, and the weighted average of dissolved-solids concentrations was 2,010 ppm. Beals Creek is less mineralized than the Colorado River upstream, and the dissolved-solids concentrations ranged from 180 ppm to 8,440 ppm, with a weighted average of 680 ppm. Downstream from Beals Creek, at the Silver station, the quality of the Colorado River water is better than at Ira or Colorado City. The range in dissolved-solids concentrations was from 314 to 12,800 ppm, a new maximum for the period of record. The weighted average was 1,270 ppm. During the 1959 water year, water discharge of the Colorado River near San Saba was only about 40 percent of the 41-year average. However, the weighted average of dissolved-solids concentrations was 315 ppm, only slightly greater than the 304 ppm recorded for the 1958 water year, when streamflow was about normal. The station at Austin measures the chemical quality of water that has been thoroughly mixed by passage through the six Highland lakes and only gradual changes in composition occur. Although runoff was less than normal, flow passing Austin was of good quality. The weighted average of dissolved-solids concentrations was only 249 ppm. Inflow from tributary streams below Austin produces little significant change in the chemical composition of the Colorado River. At Wharton, a weighted average of 231 ppm shows water of the same good quality as that released from the lakes above Austin. ## Guadalupe River Basin The Guadalupe River heads in the Edwards Plateau and flows across the Balcones fault zone. A relatively high base flow is maintained by natural springs in the drainage area. Water from the Guadalupe River is of the calcium bicarbonate type and rarely exceeds 400 ppm in dissolved solids. In the 1959 water year, runoff at the Victoria station was slightly greater than the 24-year average, and the weighted average of dissolved-solids concentrations was 303 ppm. The station, San Antonio River at Goliad, was re-established in the 1959 water year. Chemical-quality records are also available for this station for the 1946 water year. In 1959, dissolved-solids concentrations ranged from 159 ppm to 808 ppm, with a weighted average of 457 ppm. #### Nueces River Basin The only sampling point in the Nueces
River basin for the 1959 water year was near Mathis at the outflow from Lake Corpus Christi. Past records indicate that considerable variation in chemical quality occurs at upstream points in the Nueces basin, but mixing of flood flows in the lake results in water that is always of good quality. The weighted average of dissolved-solids concentrations was 274 ppm. ## Rio Grande Basin Streamflow at the station, Pecos River below Red Bluff Dam near Orla, was only 33 percent of the 22-year average but was 15 percent greater than in 1958. The weighted average of dissolved-solids concentrations decreased from 5,900 ppm in 1958 to 5,140 ppm in 1959. Storage in Red Bluff Reservoir decreased during the year to 60,000 acre-feet, only about 20 percent of capacity. Floods occurred throughout October in the Rio Grande from Rio Conchos downstream but they were most severe in the lower Rio Grande Valley below Falcom Reservoir as a result of heavy inflow from lower Texas tributaries and a record high monthly rainfall of 17.12 inches at Brownsville. Streamflow for the water year was near average and dissolved-solids concentrations were generally lower than in 1958. Figure 3. - Periods of operation of quality-of-water sampling stations in Texas Figure 3. - Periods of operation of quality-of-water sampling stations in Texas - Continued Figure 3. - Periods of operation of quality-of-water sampling stations in Texas - Continued *Analyses by the U. S. Department of Agriculture, published in Water Bulletins of the International Boundary and Water Commission. See page 1. Figure 3. - Periods of operation of quality-of-water sampling stations in Texas -- Continued ## TABLES OF ANALYSES In the following tables the heading "Chemical analyses, in parts per million, water year October 1958 to September 1959" has been used throughout. These tables have been prepared by the U. S. Geological Survey, utilizing prepared forms with this heading appearing thereon. The reader's attention is called to the fact that certain columns of these tables contain values that are not given in parts per million. A listing of these excepted columns follows: Date of collection Mean discharge (cfs) Dissolved solids - Tons per acre-foot Dissolved solids - Tons per day Percent sodium Sodium-adsorption ratio Specific Conductance (micromhos at 25°C) pН Density at 20°C #### ARKANSAS RIVER BASIN #### 2275. CANADIAN RIVER NEAR AMARILLO, TEX. LOCATION.--At gaging station at bridge on U. S. Highways 87 and 287, 1,500 feet downstream from Pitcher Creek, 1.7 miles downstream from Panhandle & Santa Fe Railway bridge, and 19 miles north of Amarillo, Potter County. DRAINAGE AREA.--19,445 square miles, of which 4,069 miles is probably noncontributing. RECORDS AVAILABLE.---Chemical analyses: July 1948 to October 1949, February 1950 to September 1959. Water temperatures: August 1949 to September 1959. Sediment records: August 1949 to September 1952. EXTREMES, 1958-59.--Dissolved solids: Maximum, 2,130 ppm Apr. 8-9; minimum, 394 ppm Aug. 23-31. Hardness: Maximum, 704 ppm Apr. 8-9; minimum, 116 ppm Aug. 23-79. Water temperatures: Maximum, 76°F Aug. 16; minimum, freezing point on many days during winter months. EXTREMES, 1948-59.--Dissolved solids: Maximum, 3,000 ppm Mar. 21, 1957; minimum, 252 ppm Sept. 21-30, 1957. Hardness: Maximum, 974 ppm Mar. 21, 1957; minimum, 69 ppm Sept. 6, 1957. Specific conductance: Maximum daily, 4,490 micromhos Mar. 21, 1957; minimum daily, 35°F June 29, 1951; minimum daily, 35°F June 29, 1951; minimum daily, 35°F June 29, 1951; minimum daily, 36°F 30°F REMARKS.--Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631. Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dia | ssolved so | olids | Hard
as C | | Per- | So-
dium | Specific
conduct- | | |--------------------|-------------------------|-------------------------------|------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-------| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₂) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-10, 1958 | 69.1 | 23 | | 84 | 28 | 2.7 | | 238 | 280 | 290 | 1.0 | 1.7 | | 1,110 | 1.51 | 207 | 324 | 130 | 64 | 6.5 | 1,810 | . 7.5 | | Oct. 11-20 | 29.2 | 31 | | 102 | 38 | 30 | | 241 | 317 | 362 | 1.6 | 36 | | 1,310 | 1.78 | 103 | 411 | 214 | 62 | 6.5 | 2,140 | 7.2 | | Oct. 21-31 | 14.4 | 49 | | 100 | 42 | 25 | | 255 | 281 | 292 | 2.5 | 77 | | 1,230 | 1.67 | 47.8 | 422 | 213 | 57 | 5.5 | 1,950 | 7.0 | | Nov. 1-10 | 17.0 | 54 | | 89 | 40 | 28 | | 410 | 233 | 250 | 2.5 | 83
66 | | 1,240 | 1.69 | 56.9 | 386 | 50 | 62 | 6.3 | 1,840 | 7.3 | | Nov. 11-20 | 30.8 | 34 | | 96 | 41 | 25 | | 303 | 245 | 290 | 1.6 | 56 | | 1,180 | 1.60 | 98.1 | 408 | 160 | 58 | 5.6 | 1,960 | 7.0 | | Nov. 21-30 | 29.6 | 34 | | 112 | 43 | 31 | 9 | 241 | 340 | 390 | 1.6 | 36 | | 1,410 | 1.92 | 113 | 456 | 259 | 60 | 6.5 | 2,330 | 6.7 | | Dec. 1-10 | 21.7 | 39 | | 108 | 42 | 33 | 2 | 350 | 311 | 345 | 1.9 | 77 | | 1,430 | 1.94 | 83.8 | 442 | 155 | 62 | 6.9 | 2,250 | 6.8 | | Dec. 11-19 | 27.4 | 42 | | 122 | 39 | 32 | 1 | 271 | 341 | 378 | 1.7 | 60 | | 1,440 | 1.96 | 107 | 465 | 243 | 60 | 6.5 | 2,280 | 7.7 | | Dec. 20-31 | 48.2 | 26 | | 114 | 39 | 38 | | 256 | 397 | 442 | 1.1 | 26 | | 1,550 | 2.11 | 202 | 445 | 235 | 65 | 7.8 | 2,500 | 7.9 | | Jan. 1-10, 1959 | 17.6 | 30 | | 142 | 41 | 348 | 8.9 | 257 | 411 | 455 | 1.2 | 38 | | 1,600 | 2.18 | 76.0 | 523 | 312 | 59 | 6.6 | 2,570 | 7.6 | | Jan. 11-20 | 49.8 | 24 | | 95 | 36 | 34 | | 254 | 306 | 412 | .9 | 16 | | 1,350 | 1.84 | 182 | 385 | 1.76 | 66 | 7.5 | 2,260 | 8.2 | | Jan. 21-31 | 31.0 | 26 | 1 | 112 | 41 | 38 | 4 | 282 | 371 | 458 | 1.0 | 21 | | 1,550 | 2.11 | 130 | 448 | 217 | 65 | 7.9 | 2,520 | 8.2 | | Feb. 1-14 | 61.6 | 33 | | 118 | 44 | 39 | 7 | 262 | 399 | 478 | 1.4 | 39 | | 1.640 | 2.23 | 273 | 476 | 261 | 64 | 7.9 | 2,660 | 7.4 | | Feb. 15-28 | 14.2 | 51 | | 85 | 39 | 27 | 2 | 426 | 235 | 258 | 2.5 | 2 | | 1,150 | 1.56 | 44.1 | 372 | 24 | 61 | 6.2 | 1,870 | 7.6 | | Mar. 1-10 | 10.6 | 50 | | 70 | 34 | 16 | 2 | 288 | 143 | 149 | 2.5 | 82 | | 858 | 1.17 | 24.6 | 314 | 78 | 53 | 4.0 | 1,380 | 6.5 | | Mar. 11-20 | 8.52 | 51 | | 64 | 32 | 15 | 9 | 390 | 117 | 118 | 2.7 | 26 | | a762 | 1.04 | 17.5 | 291 | 0 | 54 | 4.1 | 1,300 | 6.9 | | Mar. 21-31 | 10.0 | 60 | | 60 | 32 | 16 | 5 | 400 | 117 | 114 | 2.4 | 28 | | a775 | 1.05 | 20.9 | 281 | 0 | 56 | - 4.3 | 1,240 | 7.1 | | Apr. 1-7 | 13.0 | 59 | | 64 | 33 | 139 | 16 | 305 | 113 | 118 | 2.7 | 88 | | a783 | 1.06 | 27.5 | 295 | 45 | 49 | 3.5 | 1,240 | 6.9 | | Apr. 8-9 | 33.5 | 37 | | 188 | 57 | 46 | 6 | 202 | 634 | 610 | 1.3 | 33 | | 2,130 | 2.90 | 193 | 704 | 538 | 59 | 7.6 | 3,270 | 8.2 | | Apr. 10-20 | 14.5 | 50 | 1 | 64 | 33 | 1.7 | 6 | 403 | 130 | 143 | 2.5 | 4.2 | | a801 | 1.09 | 31.4 | 295 | 0 | 56 | 4.5 | 1,340 | 7.4 | | Apr. 21-30 | 10.9 | 58 | | 60 | 35 | 1.3 | 8 | 384 | 104 | 116 | 2.9 | .2 | | 728 | .99 | 21.4 | 294 | 0 | 51 | 3.5 | 1,250 | 7.1 | | May 1-3, 6 | 9.65 | 54 | | 63 | 36 | 14 | | 298 | 117 | 144 | 2.5 | 62 | | 841 | 1.14 | 21.9 | 305 | 61 | 51 | 3.7 | 1,350 | 6.8 | | May 4-5, 7-10 | 130 | 18 | | 38 | 16 | 1.3 | | 187 | 134 | 115 | .9 | 3.2 | | 584 | .79 | 205 | 161 | 8 | 65 | 4.7 | 954 | 7.7 | | May 11-20 | 119 | 22 | 1 | 69 | 28 | 33 | | 238 | 315 | 348 | 1.1 | 9.9 | | 1,250 | 1.70 | 402 | 287 | 92 | 72 | 8.7 | 2,090 | 7.2 | | May 21-31 | 60.4 | 36 | | 76 | 36 | 23 | 7 | 246 | 231 | 260 | 1.8 | 50 | | 1,050 | 1.43 | 171 | 338 | 136 | 60 | 5.6 | 1,780 | 6.5 | | June 1-10 | 495 | 38 | | 53 | 27 | 18 | 7 | 259 | 158 | 169 | 1.4 | 37 | | 843 | 1.15 | 1,130 | 243 | 30 | 63 | 5.2 | 1,310 | 6.8 | | June 11-22 | 26.3 | 50 | | 63 | 34 | 18 | 8 | 326 | 168 | 171 | 2.0 | 22 | | 896 | 1.22 | 63.6 | 297 | 30 | 58 | 4.8 | 1,380 | 7.0 | | June 23-30 | 454 | 21 | | 39 | 17 | 1.6 | 0 | 200 | 141 | 140 | 1.0 | 6.2 | | 667 | .91 | 818 | 168 | 4 | 68 | 5.4 | 1,040 | 7.2 | | July 1-6 | 1,087 | 19 | | 40 | 14 | 14 | 7 | 182 | 138 | 128 | .7 | 3.5 | | a579 | .79 | 1,700 | 158 | 8 | 67 | 5.1 | 925 | 7.2 | | July 7-13 | 63.7 | 34 | | 80 | 31 | 2.3 | | 249 | 258 | 245 | 1.6 | 14 | | 1,020 | 1.39 | 175 | 327 | 123 | 61 | 5.6 | 1,630 | 6.8 | | July 14-18 | 620 | 1.7 | | 34 | 11 | 10 | 5 | 177 | 91 | 82 | .6 | 3.0 | | 432 | .59 | 723 | 130 | 0 | 64 | 4.0 | 706 | 7.4 | | July 19-31 | 169 | 20 | | 49 | 19 | 1.7 | 8 | 214 | 187 | 150 | .9 | 5.4 | | 734 | 1.00 | 335 | 200 | 25 | 66 | 5.5 | 1,180 | 7.7 | | Aug. 1-2, 9 | 298 | 35 | | 64 | 32 | 22 | 4 | 292 | 202 | 220 | 1.7 | 16 | | a939 | 1.28 | 756 | 291 | 52 | 63 | 5.7 | 1,510 | 8.2 | | Aug. 3-8, 10, 16 | 947 | 48 | | 54 | 32 | 1.5 | 0 | 307 | 139 | 125 | 2.2 | 18 | | 753 | 1.02 | 1,930 | 266 | 14 | 55 | 4.0 | 1,150 | 7.4 | | Aug. 11-15, 17-22 | 722 | 17 | | 36 | 13 | 13 | | 196 | 123 | 105 | .9 | 2.5 | 1 | 532 | .72 | 1,040 | 144 | 0 | 67 | 5.0 |
863 | 7.4 | | Aug. 23-31 | 2,332 | 15 | | 30 | 10 | | 7 | 168 | 91 | 65 | .7 | 2.5 | | 394 | .54 | 2,480 | 116 | 0 | 65 | 3.9 | 637 | 7.8 | | Sept. 1-8 | 128 | 20 | | 48 | 16 | 14 | | 195 | 136 | 127 | .9 | 7.9 | | a592 | .81 | 205 | 186 | 26 | 62 | 4.5 | 1,000 | 7.5 | | Sept. 9-18 | 14.9 | 48 | | 74 | 33 | 20 | | 278 | 203 | 212 | 2.0 | 29 | 1 | a944 | 1.28 | 38.0 | 320 | 92 | 58 | 5.0 | 1,570 | 6.8 | | Sept. 19-25, 27-30 | 48.7 | 42 | | 56 | 26 | 15 | | 310 | 126 | 135 | 1.9 | 14 | | 726 | .99 | 95.5 | 246 | 0 | 58 | 4.4 | 1,210 | 6.9 | | Sept. 26 | 74.0 | | | | | - | - | 215 | | 77 | | | - | | | | 186 | 10 | | | 768 | 7.8 | | Weighted average | 188 | 24 | | 46 | 19 | 15 | 3 | 215 | 143 | 134 | 1.1 | 11 | | 649 | 0.88 | 329 | 193 | 1.7 | 63 | 4.8 | 1,040 | | a Calculated from determined constituents. #### ARKANSAS RIVER BASIN--Continued #### MISCELLANEOUS ANALYSES OF STREAMS IN ARKANSAS RIVER BASIN IN TEXAS Chemical analyses, in parts per million, water year October 1958 to September 1959 | | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dir
(| solved so | lids
ad) | Hard
as C | iness
cCO, | Per- | So-
dium | Specific
conduct- | | |--------------------|-------------------------|--|--------------|--|--|--|---------------------------------|---|---|---|---|---|------------|---|---|--------------------|---|---|--|--|---|--| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO.) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25' C) | pH | | | | | | | | | | EAST | AMARILL | O CREEK N | EAR AMA | RILLOL | | | | | | | | | | | | Oct. 1, 1958 | | 54
48
57
54
74
74
62
59
64 | | 58
54
56
50
56
50
58
52
54 | 31
37
25
31
33
37
34
33
36 | 12
18
14
16
15
19
15 | 67
8
65
65
66
69 | 277
384
438
396
440
530
461
276
420 | 82
118
82
85
91
93
99
96
83 | 104
122
80
136
104
110
96
104
112 | 3.3
2.6
2.6
2.4
3.0
2.9
3.1
2.5
3.0 | 85
94
.0
.5
3.2
.2
.0
82
16 | | 674
852
666
719
735
820
a744
694
4751 | 0.92
1.16
.91
.98
1.00
1.12
1.01
.94 | | 272
286
242
252
275
277
284
265
282 | 45
0
0
0
0
0
0
0
39 | 49
59
57
59
55
60
54
51
54 | 3.2
4.3
4.2
4.5
4.1
5.0
4.0
3.4 | 1,150
1,340
1,070
1,230
1,200
1,290
1,290
1,230
1,230 | 3.0
7.5
7.7
7.8
7.7
7.9
7.9
7.9
7.8
7.6 | | Dec. 3, 1958 | 2.24 | | | | | | | 252 | . 500.22 | 16 | T | | | | | | 194 | 0 | | | 466 | 7.3 | | | | | | | | | | 2277 | . CHICK | EN CREEK | NEAR AM | ARILLO | | | | | | | | | | | | Dec. 3, 1958 | 1.70 | | | | | | | 213 | | 225 | | | | | | | 185 | 10 | | | 350 | 3.2 | | | | | | | | * | | 2278 | . COETA | S CREEK N | EAR AMAI | RILLO | | | | | | | | | | | | Dec. 3, 1958 | 0.86 | | | | | | | 213 | | 16 | | | | | | | 177 | 2 | | | 424 | 7.5 | $^{^{\}rm 1}$ Part of the flow of East Amarillo Creek is effluent from a sewage treatment plant. a Residue on evaporation at $180\,^{\circ}{\rm C}_{\odot}$ #### RED RIVER BASIN #### 2999.3. SALT FORK RED RIVER NEAR HEDLEY, TEX. LOCATION. --One mile downstream from Whitefish Creek and 9.5 miles northeast of Hedley, Donley County. DRAINAGE AREA. --868 square miles, of which 209 square miles is probably noncontributing. RECORDS AVAILABLE. --Chemical analyses: March 1956 to September 1959. Water temperatures: March 1956 to September 1959. EXTREMES, 1958-59. --Dissolved solids: Maximum, 1,810 ppm Mar. 11-14, 16, 20, 22, 25, 28; minimum, 563 ppm Mar. 5. Hardness: Maximum, 841 ppm Mar. 11-14, 16, 20, 22, 25, 28; minimum, 275 ppm Jan. 8. Specific conductance: Maximum daily, 2,700 micromhos Mar. 11; minimum daily, 768 micromhos May 27. Water temperatures: Maximum, 90°F Sept. 4; minimum, 34°F Dec. 14. EXTREMES, 1956-59. --Dissolved solids: Maximum, 2,600 ppm Apr. 30, 1956; minimum, 231 ppm Aug. 29, 1957. Hardness: Maximum, 1,640 ppm Apr. 30, 1956; minimum, 126 ppm Aug. 29, 1957. Specific conductance: Maximum daily, 3,530 micromhos Jan. 25, 1957; minimum daily, 382 micromhos Aug. 29, 1957. Water temperatures: Maximum, 95°F June 30, 1957; minimum, freezing point Jan. 16-18, 1957, Feb. 17, 1958. REMARKS. - Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available. No flow during much of the period Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Dis- | Silica | Iron | Cal- | Mag- | So- Po | - 1 | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | Hard
as C | iness
aCO ₃ | Per- | So-
dium | Specific
conduct- | | |--|-----------------|----------------------|------|-----------------------|----------------------|--------------------------|-----|-------------------------------|--------------------------|--------------------------|-----------------|-----------------------------|------------|----------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|----------------------|--------------------------|----------------------------------|--------------------------| | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | (Ca) | ne-
sium
(Mg) | dium tas
(Na) (K | m | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Nov. 14-30, 1958
Dec. 1-15
Dec. 16-31 | :: | 28
24
22 | | 116
124
144 | 36
38
40 | 158
145
145 | | 202
196
201 | 332
358
418 | 188
173
168 | 0.8
.6
.6 | 2.8
2.5
2.5 | | 992
992
1,040 | 1.35
1.35
1.41 | | 438
466
524 | 272
306
360 | 44
40
38 | 3.3
2.9
2.8 | 1,490
1,460
1,550 | 7.8
7.7
7.8 | | Jan. 4-7, 9-14, 1959
Jan. 8 | 73.8 | 32
39
32 | * | 91
69
121 | 34
25
44 | 126 4
113
178 | .9 | 176
129
192 | 283
227
402 | 153
124
205 | .8
.6
.8 | 4.5
2.2
3.5 | | 862
696
1,080 | 1.17
.95
1.47 | | 367
275
483 | 223
169
326 | 42
47
44 | 2.9
3.0
3.5 | 1,260
1,040
1,620 | 8.2
8.2
8.2 | | 17, 20
Feb. 2 | 2.0 | 30
45 | | 119
144 | 42
53 | 155
179 | | 184
175 | 386
518 | 175
198 | .7 | 4.8
3.5 | | 1,000 | 1.36 | | 470
578 | 318
434 | 42
40 | 3.1
3.2 | 1,510
1,800 | 8.2 | | 18, 19
Feb. 22-28 | | 16
24 | | 74
152 | 24
56 | 91
193 | | 110
183 | 234
556 | 103
210 | .7 | 1.5 | | 1,280 | .86
1.74 | | 283
610 | 193
460 | 41
41 | 2.3
3.4 | 956
1,870 | 8.1
8.1 | | Mar. 1-4, 6-10
Mar. 5
Mar. 11-14, 16, 20, 22, | | 17 | | 1 51
72 | 50
24 | 152
81 | | 155 | 504
218 | 182
101 | .7 | 1.0 | | 1,140
a563 | 1.55 | | 582
278 | 455
196 | 36
39 | 2.7 | 1,710
917 | 7.6
8.2 | | 25, 28
Mar. 15, 17-19, 21,
23-24, 26-27, 29
Apr. 1-10
Apr. 11-23 | | 24
24
36
38 | | 149
110
96 | 74
54
50
46 | 278
172
154 162 | 7.0 | 184
156
106
95 | 534
475
428 | 198
176
180 | .9
.7
.9 | 2.5
2.5
2.0 | | 1,810
1,210
1,060
1,000 | 1.65
1.44
1.36 | | 594
480
428 | 466
393
350 | 39
41
45 | 3.1
3.1
3.4 | 1,800
1,570
1,490 | 7.6
8.2
7.6
7.5 | | May 5-6, 9-17, 19-21
May 7-8
May 22-30
June 1-9 | | 36
25
28
34 | | 103
86
92
95 | 41
23
24
35 | 155
101
109
125 | | 132
160
173
130 | 386
222
238
334 | 177
115
122
139 | .8
.7
.7 | 1.8
3.0
2.5
2.0 | | a966
711
717
872 | 1.31
.97
.98
1.19 | | 426
309
328
381 | 318
178
186
274 | 44
42
42
42 | 3.3
2.5
2.6
2.8 | 1,460
1,060
1,080
1,250 | 7.5
7.8
7.8
7.7 | | Sept. 3-15 | | 40
46 | | 104
100 | 36
36 | 120
134 | | 141
137 | 340
358 | 138
141 | .9 | 1.8 | |
904
911 | 1.23 | | 408
398 | 292
285 | 39
42 | 2.6
2.9 | 1,280
1,280 | 8.0
7.9 | a Calculated from determined constituents. #### RED RIVER BASIN -- Continued #### 3150. LITTLE WICHITA RIVER NEAR HENRIFTTA, TEX. LOCATION.--At gaging station at bridge on State Highway 148, 1.5 miles northwest of Henrietta, Clay County, and 4 miles upstream from Turkey Creek. DRAINAGE AREA.--1,037 square miles. RECORDS AVAILABLE.--Chemical analyses: December 1952 to January 1956, March to September 1959. RECORDS AVAILABLE. --Chemical analyses: December 1952 to January 1956, March to September 1959. Water temperatures: December 1952 to January 1956, March to September 1959. EXTREMES, 1959. --Dissolved solids: Maximum, 1,430 ppm Sept. 5; minimum, 63 ppm June 23. Hardness: Maximum, 350 ppm Sept. 5; minimum, 31 ppm June 23. Specific conductance: Maximum daily, 2,740 micromhos Sept. 5; minimum daily, 100 micromhos June 23. EXTREMES, 1952-56, 1959. --Dissolved solids: Maximum, 1,700 ppm Mar. 15-16, 1953; minimum, 57 ppm May 19, 1955. Hardness: Maximum, 700 ppm May 1, 1953; minimum, 25 ppm Feb. 20, 1955. Specific conductance: Maximum daily, 5,910 micromhos May 1, 1953; minimum daily, 81 micromhos Oct. 24, 1953. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631. Chemical analyses, in parts per million, March to September 1959 | | | | | | | , | | | 10 1 2m Fo | | T | | о вере | ember 193 | | | | | | | | | |--|---|---|--------------|--|---|---|--------------------|--|--|---|--|--|------------|---|---|--|--|---|--|---|--|---| | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved so
alculate | | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₂) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Mar. 11, 1959 Mar. 12-16 Mar. 17-26 Mar. 27-31, Apr. 1-3 Apr. 4-15 Apr. 16-17 Apr. 18-30 | a0
a2.60
a12.2
a0
a0
a7.50
a18.0 | 2.2
5.2
9.2
8.2
6.8
7.8
8.6 | | 88
92
32
34
36
33
20 | 23
27
11
11
12
9.4
4.9 | 25
26
5
5
61
62 | 1
1
5
4.4 | 178
169
170
179
194
170
88 | 15
17
10
11
13
11
7.0 | 505
532
60
64
71
72
26 | 0.3
.3
.2
.2
.2
.3
.4 | 0.8
.8
.8
.8
2.0
5.9 | | 980
1,020
b270
b284
b312
b300
140 | 1.33
1.39
.37
.39
.42
.41 | 7.16
8.89

6.08
6.80 | 314
340
125
130
140
121
70 | 168
202
0
0
0
0 | 64
62
47
48
48
53
42 | 6.3
6.1
2.0
2.1
2.2
2.4
1.2 | 1,860
2,000
491
518
559
529
258 | 7.7
7.4
8.2
7.4
7.9
7.8
7.4 | | May 1-11 | a14.0
471 | 8.8
9.6 | | 23
78 | 6.1
23 | 28
34: | | 102
128 | 7.2
25 | 35
642 | .2 | 3.5 | | 162
1,190 | 1.62 | 6.12
1,510 | 82
289 | 0
184 | 43
72 | 1.3 | 308
2,300 | 7.4
7.8 | | 13-24 | | 8.8
9.8
7.8
8.4

9.4
6.4
4.2 | | 34
34
58
30

17
6.8
32
14 | 8.5
9.3
17
8.5

5.0
3.4
8.3
4.4 | 9
8!
22
9:

3!
10
8! | 9
7
7
- | 108
124
83
107
120
71
39
80
60 | 9.4
11
16
9.2

6.4
4.4
7.6
4.0 | 161
142
440
156
193
56
10
164
18 | .3
.4
.4
.4

.3
.2
.2 | 4.4
3.0
3.5
3.5
3.0
2.5
1.0
2.0 | | 376
5382
811
5390

5186
63
345
97 | .51
.52
.1.10
.53

.25
.09
.47 | 54.3
.01
278
21.1

615
388
1,540
157 | 120
123
214
110
126
63
31
114
53 | 32
22
146
22
28
5
0
48
4 | 64
61
70
66

57
42
63
35 | 3.8
3.5
6.7
4.0

2.1
.8
3.6
.8 | 739
688
1,580
704
832
310
116
673
174 | 7.6
7.2
7.2
7.3
7.4
7.1
7.2
8.2
6.7 | | July 3-10 | 46.3
59.0
36.0
8.90
7.60
258
7.36
a0
a0 | 11

11
10
12
16
14
9.0 | | 39

14

43
14
20
27
31
82 | 12
4.9

13
4.1
5.5
6.9
8.3
22 | 131
24
126
13
25
34
45 | | 80
89
81
78
99
63
94
113
122
61 | 11
5.2

10
3.2
4.4
5.4
5.6
14 | 250
139
23
136
241
17
31
50
72
538 | .3 .3 .3 .3 .3 | 2.0
3.5
2.0
1.5
1.5
1.2
1.5
2.0 | | 495

126

495
94
146
b210
b250
941 | .67
.17
.67
.13
.20
.29
.34
1.28 | 61.9

12.2

10.2
65.5
2.90

2.29 | 147
108
56
110
161
52
72
96
112
295 | 82
35
0
46
80
0
0
3
12
245 | 66

48

63
36
43
44
47
64 | 4.7
1.4

4.3
.8
1.3
1.5
1.8
6.2 | 961
605
223
591
950
167
266
353
435
1,820 | 7.1
7.0
7.5
6.9
7.4
7.0
7.2
6.8
6.8 | | Sept. 3-4 | 138
221
59.3
a1.45
a17.3 | 8.6
14
9.6
9.6
. 8.0 | | 14
96
29
32
36 | 4.8
27
7.9
9.2
9.4 | 35
409
94
111
134 | | 55
48
97
196
93 | 6.6
29
11
11
14 | 54
825
152
184
232 | .1
.5
.4
.4 | 2.0
6.3
2.2
1.0 | | 152
1,430
b367
b430
b497 | .21
1.94
.50
.58
.68 | 56.6
853
58.8
1.68
23.2 | 55
350
105
118
128 | 10
311
26
31
49 | 58
72
66
67
69 | 2.1
9.5
4.0
4.4
5.1 | 281
2,740
680
793
935 | 6.9
7.7
7.3
6.9
6.9 | | Weighted average | c79.4 | 8.9 | | 21 | 6.1 | 50 | | 69 | 6.6 | 85 | 0.3 | 2.4 | | 218 | 0.30 | 46.7 | 78 | 21 | 58 | 2.5 | 404 | | a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at 180°C. c Represents 99 percent of flow for water year October 1958 to September 1959. #### RED RIVER BASIN -- Continued #### 3154. LITTLE WICHITA RIVER NEAR RINGGOLD, TEX. LOCATION. -- At gaging station at bridge on County Road (abandoned) 2 miles downstream from East Fork Little Wichita River, about 8 miles northwest of Ringgold, Montague County, and about 11.5 miles upstream from mouth. DRAINAGE AREA.--1,350 square miles, approximately. RECORDS AVAILABLE.--Chemical analyses: March to September 1959. EXTREMES, 1959.--Dissolved solids: Maximum, 2,810 ppm Mar. 16-18; minimum, 38 ppm Sept. 4. Hardness: Maximum, 770 ppm Mar. 16-18; minimum, 19 ppm Sept. 4. Specific conductance: Maximum daily, 5,200 micromhos Mar. 18; minimum daily, 60 micromhos Sept. 4. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for the period March to September 1959 given in Vater-Supply Paper 1631. Chemical analyses, in parts per million, March to September 1959 | Part | | Mean | | | Cal- | Mag- | | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | solved so | | Hard
as C | dness
aCO; | Per- | So-
dium | Specific
conduct- | |
---|---|---|---|--------------|--|---|---|-----|--|--|--|--|--|-----|---|---|--|--|--|--|--|--|---| | Mar. 19-26, 26 | Date of collection | | Sílica
(SiO ₂) | Iron
(Fe) | 55333554 | | dium | ium | | - ASSESSED 1 | 100000000000000000000000000000000000000 | | trate | ron | per
mil- | per
acre- | per | cium,
magne- | carbon- | 50- | adsorp-
tion | micro- | pН | | No. 11, 12 (12°) s.m. 191 8.0 15 4.3 34 71 7.4 44 3 1.0 1.49 2.0 76.8 55 0 57 2.0 2.92 7.0 | Mar. 19-24, 26 Mar. 25 Mar. 27-30 Mar. 31, Apr. 1-9 Apr. 10-16 Apr. 17-18 | a5.99
.10
0
0
0
a18.5 | 7.4
13
9.2
6.6
6.2
6.6 | | 34
38
42
44
42
35 | 13
12
11
14
14 | 73
100
82
84
76
80
40 | 5.0 | 176
190
203
220
216
192 | 14
17
15
16
7.2
9.6
8.0 | 98
132
103
109
101
94
47 | .3
.3
.3
.3
.4
.2 | .4
1.0
.5
1.0
.5
.8
4.8 | | 6348
6415
363
6406
6384
6348 | .47
.56
.49
.55
.52 | 5.63
.11

17.4 | 138
144
150
168
162
128 | 0 0 0 0 0 0 | 54
60
54
51
51
57 | 2.7
3.6
2.9
2.8
2.6
3.1 | 629
747
667
721
684
624 | 8.1
7.8
3.1
8.2
6.C
7.3
7.3 | | July 1-3 | May 11, 12 (12 p.m 12m) | 191
270
72.2
3.00
a3.19
a11.0
199
64.5 | 8.0
13
8.2

10
7.8
8.0
9.2 | | 15
145
37

48
31
16
49 | 4.3
42
9.1

11
9.1
4.4 | 34
640
113

169
105
29
205 | | 71
107
99
77
107
114
73
102 | 7.4
26
11

16
9.6
4.8 | 44
1,280
199
508
302
167
37
372 | .3
.3
.2

.4
.4
.3 | 1.0
7.5
4.0

2.5
3.0
3.5
3.0 | | 149
2,210
430

612
b416
139
716 | .20
3.01
.58

.83
.57
.19 | 76.8
1,610
83.8

5.27
12.4
74.7 | 55
534
130
220
165
115
58
180 | 0
447
49
157
78
22
0
96 | 57
72
65

69
66
52
71 | 2.0
12
4.3

5.7
4.2
1.6
6.6 | 292
4,120
854
1,840
1,190
752
257
1,390 | 7.6
7.1
7.2 | | July 10, 14-15 | July 1-3 | | | | | | | | | | | | | | | | | | 1 13 | | | | 6.8
6.5 | | Sept. 2-3 | July 10, 14-15 | 23.3
151
10.0
3.38
a.08
a3.93
1.57 | 10
11
12
13
14
16
10 | | 28
16
36
24
32
32
29 | 7.1
3.6
9.0
6.4
8.5
8.7
9.6 | 67
19
104
32
34
36
93 | | 81
70
108
104
140
142
78 | 7.6
7.0
15
5.6
5.4
5.4 | 119
20
176
44
48
50
168 | .3
.2
.3
.3
.3 | 1.0
2.2
1.0
1.2
.8
1.2 | | 280
113
406
178
212
5235
5392 | .38
.15
.55
.24
.29
.32
.53 | 17.6
46.1
11.0
1.62
.05
2.49
1.66 | 99
55
127
86
115
116
112 | 33
0
38
1
0
0 | 59
43
64
44
39
40
64 | 2.9
1.1
4.0
1.5
1.4
1.5
3.8 | 532
199
760
325
390
392
693 | 6.7
6.7
7.7
7.3
6.9 | | | Sept. 2-3 | 68.0
383
311
44.2
33.1
415
47.0 | 7.6
7.6
8.4
8.8
8.8
11
7.8
8.2 | | 18
5.2
11
26
30
9.5
46
30 | 5.6
1.5
3.2
7.0
8.5
2.6
13
8.1 | 44
4
20
68
83
9
192
105 | .3 | 62
22
50
98
115
44
77
73 | 5.8
2.6
5.0
7.6
9.0
4.6
15 | 74
4.0
26
107
132
9.0
358
185 | .2
.1
.3
.4
.4
.2
.4 | 1.2
2.0
1.8
2.0
.8
.8
2.2
1.2 | | 186
38
101
b288
b350
69
b722
388 | .25
.05
.14
.39
.48
.09
.98 | 34.1
39.3
84.8
34.4
31.3
77.3
91.6
9.64 | 68
19
41
94
110
34
168
108 | 17
1
0
13
16
0
106
48 | 58
33
52
61
62
37
71
68 | 2.3
.4
1.4
3.0
3.4
.7
6.4
4.4 | 352
60
179
521
619
111
1,280
750 | 7.0
6.9
7.2
7.3
6.8 | a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at $180\,^{\circ}\text{C}$. #### 3160. RED RIVER NEAR GAINESVILLE, TEX. LOCATION. -- At gaging station at bridge on U. S. Highway 77, a quarter of a mile downstream from Gulf, Colorado and Santa Fe Railway bridge, 5 miles downstream from Fish Creek, 7 miles north of LOCALIUM. --At gaging station at pringe on 0. S. Highway //, a quarter of a mile downstream from Gainesville, Cooke County, and at mile 791.5. DRAINAGE AREA. --30.782 square miles, of which 5,936 square miles is probably noncontributing. RECORDS AVAILABLE. --Chemical analyses: May 1944 to April 1946, October 1952 to September 1959. Water temperatures: October 1952 to September 1959. Water temperatures: October 1952 to September 1959. FXTREMES. 1958-59. -Dissolved solids: Maximum 4.690 npm Apr. 20: minimum 472 npm Sept. 5. Hardness: Maximum, 1,220 ppm Aug. 16-22; minimum, 185 ppm Sept. 5. Specific conductance: Maximum daily, 7,920 micromhos Aug. 18: minimum daily, 802 micromhos Sept. 5. Water temperatures: Maximum, 91°F Aug. 3; minimum, freezing point Jan. 21. EXTREMES, 1944-46, 1952-59.-Dissolved solids: Maximum, 5,480 ppm Apr. 11, 1953; minimum, 115 ppm Nov. 4, 1957. EXTREMES, 1944-46, 1952-59,--Dissolved solids: Maximum, 6,480 ppm Apr. 11, 1953; minimum, 110 ppm Nov. 4, 1957. Hardness: Maximum, 1,510 ppm Apr. 11, 1953; minimum, 81 ppm Nov. 4, 1957. Specific conductance: Maximum daily, 9,890 micromhos Apr. 11, 1953; minimum daily, 176 micromhos Nov. 4, 1957. Water temperatures (1952-59): Maximum, 95°F July 13, 1954; minimum, freezing point Dec. 23, 1953, Jan. 21, 1954, Jan. 16-17, 1957, Jan. 21, 1959. REMARKS.--Records of specific conductance of daily samples for period May 1944 to April 1946 available in district office at Austin, Tex. Records of specific conductance of daily samples for period October 1952 to September 1959 available in district office at Oklahoma City, Okla. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631. Chemical analyses, in parts per million, water year October 1958 to September 1959 | Date of collection | Mean | | | Cal- | Mag- | So- Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dis | solved so | | Hard
as Co | | Per- | So-
dium | Specific conduct- | | |---|--|---------------------------------|---|---|---|--|---
--|--|--------------|--|------------|--|--|--|--|---|--|--|--|--| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium tas-
sium
(Na) (K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | pН | | Oct. 1-2, 1958 Oct. 3-31 Nov. 1-10 Nov. 11-13 Nov. 14-20 Nov. 21-30 | 759
240
149
139
198
208 | 11 | 0.00 | 340
258
284
240
216
248 | 88
72
66
85
78
88 | 976
785
606 5.5
686
551
676 | 158
148
244
a240
192
196 | 800
597
517
530
470
574 | 1,680
1,350
1,160
1,200
1,000
1,200 | 0.4 | :: | | 4,110
3,280
2,920
3,040
2,630
3,120 | 5.59
4.46
3.97
4.13
3.58
4.24 | 8,420
2,130
1,170
1,140
1,410
1,750 | 1,210
940
980
950
860
980 | 1,080
818
780
753
702
820 | 64
64
57
61
58
60 | 12
11
8.4
9.7
8.2
9.4 | 6,360
5,240
4,640
4,770
4,100
4,840 | 7.9
7.9
8.2
8.3
8.2
8.1 | | Dec. 1-31 | 200
225
218 | 14
13
7.5 | .00 | 258
288
292 | 77
85
93 | 728 8.0
820 7.0
925 | b264
236
190 | 573
671
750 | 1,200
1,400
1,550 | .3 | 0.0 | | 3,130
3,590
3,860 | 4.26
4.88
5.25 | 1,690
2,180
2,270 | 960
1,070
1,110 | 744
876
995 | 62
62
64 | 10
11
12 | 4,810
5,500
6,110 | 8.3
7.8
8.0 | | Feb. 1-20 | 244
197
196
180
146
160 | 9.0
8.0
7.5
5.5
6.5 | .00 | 302
286
270
194
274
216 | 92
92
92
63
101
112 | 975 7.5
964
850
592
949
837 | 204
202
200
178
194
232 | 746
761
686
492
716
643 | 1,600
1,600
1,500
975
1,580
1,390 | .3
.5
 | :: | | 3,980
3,940
3,690
2,590
3,790
3,500 | 5.41
5.36
5.02
3.52
5.15
4.76 | 2,620
2,100
1,950
1,260
1,490
1,510 | 1,130
1,090
1,050
745
1,100 | 963
924
886
599
941
810 | 65
66
64
63
65
65 | 13
13
11
9.4
12 | 6,170
6,150
5,800
4,160
5,920
5,190 | 8.1
7.7
6.8
8.2
8.1
8.2 | | Apr. 1-10 | 194
309
652
1,530
3,525
1,190
885
788 | | | 224
222
300
147
79
214
78
238 | 84
82
100
40
24
59
22
70 | 665
714
1,170
356
177
462
178
672 | 158
144
116
c184
142
140
124
138 | 576
608
815
257
135
614
125
650 | 1,150
1,200
1,950
625
298
725
310
1,100 | | 5.9
4.2
4.6
5.0 | | 3,000
3,080
4,690
1,800
894
2,280
900
2,960 | 4.08
4.19
6.38
2.45
1.22
3.10
1.22
4.03 | 1,570
2,570
8,260
7,440
8,510
7,330
2,150
6,300 | 905
890
1,160
530
295
775
285
880 | 776
772
1,060
379
1,78
660
184
767 | 61
64
69
59
57
56
58
62 | 9.6
10
15
6.7
4.5
7.2
4.6
9.8 | 4,580
4,730
7,150
2,770
1,440
3,340
1,440
4,470 | 8.1
8.0
8.0
8.3
8.0
8.1
8.2
8.1 | | May 1-9
May 10
May 11
May 12-23 | 292
575
1,980
4,400
10,140 | :: | | 220
139
260
153
136 | 57
45
50
24
20 | 645
350
696
359
244 | 136
156
a144
120
120 | 571
302
699
380
332 | 1,050
600
1,080
540
360 | | 3.1
5.0
.1 | | 2,760
1,600
3,140
1,630
1,270 | 3.75
2.18
4.27
2.22
1.73 | 2,180
2,480
16,790
19,360
34,770 | 785
530
855
480
420 | 674
402
737
382
322 | 64
59
64
62
56 | 10
6.6
10
7.1
5.2 | 4,280
2,610
4,570
2,520
1,920 | 8.2
8.0
8.3
7.9
7.5 | | June 1-5 | 5,106
4,390
2,520
1,286
826
1,020
13,100
15,580 | | ======================================= | 147
172
246
304
276
131
79
126 | 23
32
43
55
60
25
13
17 | 261
402
571
834
795
335
149
273 | 112
128
128
152
148
108
5132
110 | 353
409
644
807
748
306
138
288 | 400
640
890
1,300
1,250
530
225
415 | = | 4.9
.5
.5

3.9
5.1
3.6 | | 1,390
1,740
2,540
3,470
3,240
1,420
694
1,210 | 1.89
2.37
3.45
4.72
4.41
4.93
.94
1.65 | 19,160
20,620
17,280
12,050
7,230
3,910
24,550
50,900 | 460
560
790
985
935
430
250
385 | 368
455
685
860
814
342
142
295 | 55
61
61
65
65
63
56
61 | 5.3
7.4
8.8
12
11
7.0
4.1
6.0 | 2,020
2,850
3,940
5,360
5,120
2,360
1,170
1,980 | 8.2
7.7
8.2
8.1
7.8
8.2
8.3
8.2 | a Includes equivalent of 6 parts per million of carbonate (CO3). Includes equivalent of 2 parts per million of carbonate (CO3). c Includes equivalent of 8 parts per million of carbonate (CO3). RED RIVER BASIN--Continued 3160. RED RIVER NEAR GAINESVILLE, TEX .-- Continued | | Mean | | | Cal- | Mag- | So- Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | HODE V.50.03 | solved so | | Hard
as Co | iness
cCO, | Per- | So-
dium | Specific conduct- | | |--------------------|-------------------------|-------------------------------|--------------|--------------|--------------|-------------------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium tas-
sium
(Na) (K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25' C) | pН | | July 1-3, 1959 | 4,090 | | | 128 | 24 | 263 | 102 | 331 | 400 | | 0.2 | | 1,240 | 1.69 | L3,690 | 420 | 336 | 58 | 5.6 | 1,970 | 7.9 | | July 4-5 | 12,000 | | | 180 | 33 | 362 | 116 | 454 | 570 | | .0 | | 1.730 | 2.35 | 56,050 | 585 | 490 | 5.7 | 6.5 | 2,620 | 7.9 | | uly 6-10 | 4,560 | | | 139 | 25 | 252 | 108 | 369 | 372 | | 1.9 | | 1,230 | 1.67 | 15,140 | 450 | 362 | 55 | 5.2 | 1,960 | 7.7 | | uly 11-16 | 3,870 | | | 157 | 31 | 312 | 112 | 390 | 495 | | 2.4 | | 1,560 | 2.12 | 16,300 | 520 | 428 | 5.7 | 5.9 | 2,430 | 8.1 | | July 17-20 | 5,998 | | | 101 | 1.7 | 242 | 102 | 228 | 370 | | 3.8 | | 1,100 | 1.50 | 17,810 | 320 | 236 | 62 | 5.9 | 1,730 | 3.0 | | July 21-24 | 3,080 | | 17.7 | 125 | 25 | 290 | 108 | 292 | 462 | | 2.2 | | 1,280 | 1.74 | 10,640 | 415 | 326 | 60 | 6.2 | 2,080 | 8.1 | | July 25-31 | 1,633 | | | 232 | 37 | 601 | 122 | 584 | 920 | | 3.8 | | 2,530 | 3.44 | 11,160 | 730 | 630 | 64 | 9.7 | 3,860 | 8.1 | | Aug. 1-4 | 1,995 | | | 180 | 51 | 447 | 128 | 447 | 750 | | 3.9 | | 2,040 | 2.77 | 10,990 | 660 | 555 | 60 | 7.6 | 3.260 | 8.0 | | Aug. 5-10 | 818 | | | 110 | 25 | 293 | 136 | 249 | 455 | | 2.9 | | 1,250 | 1.70 | 2,760 | 378 | 266 | 63 | 6.5 | 2,100 | 8.1 | | Aug. 11-15 | 499 | | | 176 | 57 | 508 | 156 | 432 | 850 | | 2.8 | | 2,200 | 2.99 | 2,960 | 675 | 547 | 62 | 8.5 | 3,550 | 8.1 | | Aug. 16-22 | 655 | | | 348 | 85 | 1,120 | 134 | 984 | 1,780 | | | | 4,480 | 6.09 | 7,920 | 1,220 | 1.110 | 67 | 14 | 6.880 | 7.0 | | Aug. 23-26 | 674 | | | 144 | 45 | 390 | 128 | 355 | 650 | | 2.6 | | 1,720 | 2.34 | 3,130 | 545 | 440 | 61 | 7.3 | 2,880 | 5.0 | | Aug. 27-31 | 317 | | | 168 | 117 | 774 | 136 | 681 | 1,250 | | | | 3,200 | 4.35 | 2,740 | 900 | 788 | 65 | 11 | 5,070 | 7.9 | | Sept. 1-2 | 290 | | | 224 | 65 | 711 | 134 | 615 | 1.150 | | | | 2,900 | 3.94 | 2,270 | 825 | 715 | 65 | 11 | 4,620 | 8.0 | | Sept. 3 | 650 | | | 147 | 41 | 438 | 128 | 378 | 700 | | 1.0 | | 1,840 | 2.50 | 3,230 | 535 | 430 | 64 | 8.2 | 2,980 | 7.5 | | Sept. 4 | 1,250 | | | 66 | 21 | 167 | 114 | 137 | 265 | | 3.3 | | 759 | 1.03 | 2,560 | 250 | 156 | 59 | 4.6 | 1,260 | 7.9 | | Sept. 5 | 1,960 | | | 48 | 16 | 93 | 104 | 73 | 160 | | .8 | | 472 | .64 | 2,500 | 185 | 100 | 52 | 3.0 | 802 | 7.7 | | Sept. 6 | 2,430 | | | 70 | 24 | 186 | 98 | 147 | 315 | | 3.2 | | 859 | 1.17 | 5,640 | 275 | 194 | 60 | 4.9 | 1,420 | 7.8 | | Sept. 7-8 | | | | 50 | 18 | 108 | 104 | 88 | 182 | | 3.0 | | 558 | . 76 | 5,880 | 200 | 115 | 54 | 3.3 | 962 | 7.9 | | Sept. 9 | 2,340 | | | 66 | 23 | 1.72 | 98 | 117 | 305 | | 2.0 | 1 | 796 | 1.08 | 5,030 | 260 | 180 | 59 | 4.6 | 1,330 | 7.8 | | Sept. 10 | 1,100 | | | 118 | 38 | 293 | 118 | 137 | 600 | | 1.2 | | 1,480 | 2.01
 4,400 | 450 | 354 | 59 | 6.0 | 2,400 | 7.7 | | Sept. 11 | 726 | | | 98 | 34 | 255 | 108 | 200 | 455 | | 1.3 | | 1,190 | 1.62 | 2,330 | 385 | 296 | 59 | 5.6 | 1.970 | 7.7 | | Sept. 12-20 | 416 | | | 162 | 55 | 477 | 132 | 412 | 800 | | 3.8 | | 2,060 | 2.80 | 2,310 | 630 | 522 | 62 | 8.3 | 3,250 | 7.8 | | Sept. 21-28 | 238 | | | 192 | 71 | 561 | 142 | 476 | 975 | | 3.1 | | 2,530 | 3.44 | 1,630 | 770 | 654 | 61 | 8.8 | 4,010 | 7.6 | | Sept. 29-30 | 6,110 | | | 109 | 27 | 233 | 132 | 249 | 370 | | 5.2 | | 1,120 | 1.52 | 18,480 | 385 | 277 | 57 | 5.2 | 1,830 | 7.9 | | Weighted average | 1,534 | | T | 154 | 31 | 359 | 125 | 375 | 566 | | | | 1,640 | 2.23 | 6,790 | 512 | 409 | 60 | 6.9 | 2,560 | | #### RED RIVER BASIN -- Continued #### 3316. RED RIVER AT DENISON DAM NEAR DENISON, TEX. LOCATION.--Immediately below Denison Dam, 1.7 miles upstream from Sand Creek, 4 miles northwest of Denison, Grayson County, and 3 miles upstream from gaging station near Colbert, Bryan County, Okla. DRAINAGE AREA.--39,719 square miles above dam, 39,777 square miles above gaging station, of which 5,936 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: May 1944 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 1,140 ppm July 1-31, Aug. 1-31, Sept. 1-30; minimum, 1,020 ppm Oct. 1-31. Hardness: Maximum, 300 ppm Aug. 1-31; minimum, 300 ppm Dec. 1-31. Specific conductance: Maximum daily, 1,980 micromhos May 7; minimum daily 1,720 micromhos Oct. 2. EXTREMES, 1944-59.--Dissolved solidis: Maximum, 1,140 ppm Aug. 1-20, Sept. 1-10, 1944; minimum, 464 ppm Oct. 21-31, 1945. Hardness: Maximum, 522 ppm Aug. 11-20, Sept. 1-10, 1944; minimum, 233 ppm Dec. 21-31, 1945, Jan. 11-20, 1946. Specific conductance: Maximum daily, 3,520 micromhos Aug. 14, 1944; minimum daily, 656 micromhos Oct. 16, 1945. REMARNS.-Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for gaging station near Colbert, Okla. for water year October 1958 to September 1959 given in Water-Supply Paper 1631. No appreciable inflow between dam and gaging station except during periods of heavy local rains. Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Mean
dis- | Silica | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved so | | Hard
as C | iness
aCO, | Per- | So-
dium | Specific conduct- | | |------------------------------|-----------------|---------------------|--------------|--------------|--------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|------------------------------|------------| | Date of collection | charge
(cfs) | (SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-31, 1958
Nov. 1-30 | 1,823
1,912 | 8.8
9.8 | | 99
101 | 24
31 | | 34
28 | 138
136 | 218
225 | 365
375 | :: | 0.5 | | 1,020 | 1.39 | 5,020
5,370 | 346
380 | 232
268 | 60
57 | 5.5
5.1 | 1,770 | 6.2
7.9 | | Dec. 1-31 | 1,483
2,268 | 9.0
10 | | 41
104 | 48
28 | 238 | 70 5.3 | 136
139 | 230
238 | 380
382 | 0.4 | .5 | | 1,050
1,070 | 1.43
1.46 | 4,200
6,550 | 300
374 | 188
260 | 55
58 | 6.8
5.3 | 1,840
1,870 | 8.0 | | Feb. 1-28
Mar. 1-31 | 772
2,432 | 9.0
9.2 | | 104
108 | 29
26 | | 45
42 | 140
135 | 243
243 | 385
382 | .2 | .2 | | 1,080
1,080 | 1.47 | 2,250
7,090 | 378
376 | 264
266 | 58
58 | 5.5 | 1,870
1,880 | 8.2 | | Apr. 1-30
May 1-31 | 2,263
712 | 8.8 | | 108
108 | 26
27 | 238 | 5.6 | 139
140 | 238
245 | 378
380 | . 5 | .5 | | 1,070
1,080 | 1.46
1.47 | 6,540
2,080 | 3.76
380 | 262
266 | 57
58 | 5.3
5.4 | 1,850
1,870 | 7.8
7.5 | | June 1-30
July 1-31 | 2,117
3,952 | 8.4 | | 105
110 | 25
26 | | 51
64 | 142
138 | 245
259 | 382
405 | .3 | .0 | | 1,090 | 1.48
1.55 | 6,230
12,160 | 365
382 | 248
268 | 60
60 | 5.7
5.9 | 1,860 | 7.8
7.0 | | Aug. 1-31 | 4,623
3,074 | 10
9.2 | | 112
108 | 27
26 | | 60
63 | 131
124 | 259
266 | 408
402 | .4 | 1.8 | | 1,140
1,140 | 1.55
1.55 | 14,230
9,460 | 390
376 | 283
275 | 59
60 | 5.7
5.9 | 1,900
1,940 | 7.4 | | Weighted average | 2,298 | 9.4 | | 104 | 28 | 2 | 52 | 135 | 246 | 390 | | 0.8 | | 1,100 | 1.50 | 6,830 | 374 | 264 | 59 | 5.7 | 1,880 | | #### RED RIVER BASIN -- Continued #### 3425. SOUTH SULPHUR RIVER NEAR COOPER, TEX. LOCATION.--At gaging station at bridge on State Highway 154, 0.6 mile downstream from Big Creek, 1.0 mile upstream from Brushy Creek, and 5.7 miles southeast of Cooper, Delta County. DRAINAGE AREA.--527 square miles. RECORDS AVAILABLE.--Chemical analyses: October 1958 to September 1959. Water temperatures: October 1958 to September 1959. Water temperatures: October 1938 to September 1939. EXTREMES, 1958-59.--Dissolved solids: Maximum, 432 ppm Nov. 18-20; minimum, 125 ppm Apr. 17-21. Hardness: Maximum, 164 ppm Nov. 18-20, May 1-11; minimum, 69 ppm Apr. 17-21. Specific conductance: Maximum daily, 904 micromhos Nov. 18; minimum daily, 142 micromhos Nov. 16. Water temperatures: Maximum, 91°F Aug. 5; minimum, 42°F Dec. 18, Jan. 5. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1631. Chemical analyses, in parts per million, water year October 1958 to September 1959 | | | , | | | Chem | ical ana | yses, 1 | n parts p | er milli | on, water | year o | cober 1 | 958 to | September | 1939 | | | | | | | | |---|---|--|--------------|--|--|--------------------------------------|-----------------------------------|--|--|--|--------------------------------|---|-------------------|---|---|---|---|------------------------------------|--|--|--|--| | | Mean | | | | Mag- | | Po- | | | | | | | | ssolved so | | Hard
as C | | Per- | So- | Specific
conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | iron
(Fe) | Cal-
cium
(Ca) | ne-
sium
(Mg) | So-
dium
(Na) | tas-
sium
(K) | Bicar-
bonate
(HCO ₃) | Sul-
fate
(SO,) | ride
(Cl) | Fluo-
ride
(F) | Ni-
trate
(NO ₃) | Bo-
ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | dium
adsorp-
tion
ratio | ance
(micro-
mhos at
25 C) | pН | | Oct. 1-10, 1958 Oct. 11-20 Nov. 1-14 Nov. 15-17 Nov. 18-20 Nov. 21-30 | a0.05
29.3
a .04
a .02
24.7
11.7
32.0 | 12
9.8
11
11
8.4
10
8.2 | | 43
27
34
47
25
55
39 | 4.6
3.1
3.7
5.6
4.1
6.7
4.2 | 2
2
2
3
1
10
3 | 3
5
6
5
3 | 151
101
125
165
104
139
147 | 32
30
29
44
15
60
32 | 14
10
14
25
7.5
148
28 | 0.5
.4
.4
.4
.4 | 3.2
1.8
.5
.8
.5
1.2 | | b218
155
179
b262
127
452
222 | 0.30
.21
.24
.36
.17
.61 | 0.03
12.3
.02
.01
8.47
14.3
19.2 | 126
80
100
140
79
164
115 | 2
0
0
5
0
50 | 30
39
35
36
30
58
41 | 1.0
1.1
1.1
1.3
.8
3.5
1.5 | 348
262
302
429
222
815
398 | 7.9
7.5
7.5
8.2
7.3
7.6
7.7 | | Dec. 1-17 | 17.1
5.89
28.6
23.0
2.02 | 11
12
11
9.8 | 97 | 38
46
33
33
51 | 3.7
4.6
3.2
4.1
5.4 | 47
47
12
6 | 2
4 4.1
4 | 128
164
108
93
134 | 40
52
40
32
45 | 26
24
46
180
93 | .5 | 2.5
1.8
5.0
5.0
2.0 | | b236
b276
243
434
b360 | .32
.38
.33
.59
.49 | 10.9
4.39
18.8
27.0
1.96 | 110
134
96
99
149 | 5
0
7
23
39 | 41
41
50
73
49 | 1.5
1.6
2.1
5.4
2.3 | 374
439
427
803
606 | 7.6
7.5
7.4
7.4
7.5 | | Feb. 1-14 | 832
6.94
3.02
132
594
548 | 8.8
13
14
15
10
11
13
9.6 | | 52
31
44
52
32
36
26
39 | 6.0
2.9
4.6
6.3
3.5
2.7
3.6
4.4 | 6
1
2
3
1
3
1
2 | 9
8
2
9
3
3 | 154
98
145
176
107
122
92
128 |
45
29
39
47
29
40
22
36 | 84
10
18
20
9.2
20
3.8 | .4
.5
.4
.4
.5
 | .8
6.3
5.9
4.2
3.5
5.0
4.2
2.8 | | b354
160
b242
264
160
208
131
b204 | .48
.22
.33
.36
.22
.28
.18 | 93.5
359
4.53
2.15
57.0
334
194
42.6 | 154
89
129
156
94
102
80
115 | 28
9
10
11
7
2
4 | 47
32
32
31
30
41
27
30 | 2.2
.9
1.1
1.1
.8
1.4
.7 | 606
264
374
435
268
355
215
324 | 7.9
7.8
8.0
8.1
7.6
8.2
8.1
7.6 | | Apr. 1-10 | 3.92
583
36.9
16.5 | 11
11
12
13
13
10
9.6 | | 44
51
23
38
54
40
49 | 5.2
6.1
2.9
5.0
7.1
4.7
5.5 | 1
2
3
2 | 3.2
3
5
4
1
3
7 | 150
179
78
133
197
129
172 | 41
36
23
34
42
37
37 | 14
12
7.5
14
17
13 | .4 .4 .4 .5 .5 | 2.0
1.0
3.2
2.0
1.5
6.8
3.0 | | b242
228
125
195
b279
198
b254 | .33
.31
.17
.27
.38
.27 | 8.10
2.41
197
19.4
12.4
55.1
1.87 | 131
152
69
115
164
119
145 | 8
6
5
6
2
13
4 | 29
25
32
31
29
30
29 | 1.0
.8
.8
1.0
1.1
.9 | 374
393
208
330
446
344
406 | 7.7
7.5
7.6
7.7
8.0
7.7
7.4 | | June 1-8 | 99.6
348
6.76
31.0 | 13
12
14
18
13
14 | | 46
33
34
43
40
29 | 5.0
3.5
3.0
4.4
3.8
2.6 | 1 1 2 2 2 | 9
8
2
2
2 | 174
117
120
144
129
91 | 42
22
22
32
26
19 | 25
10
7.2
13
23
8.2 | .5
.5
.6
.6 | 3.0
4.0
5.1
1.8
2.5
2.8 | | b285
162
163
206
197
133 | .39
.22
.22
.28
.27
.18 | 14.3
43.6
153
3.76
16.5
283 | 135
97
97
125
115
83 | 0
1
0
7
10
8 | 40
30
29
27
32
24 | 1.5
.8
.8
.8
1.0 | 440
275
267
355
360
241 | 7.6
7.5
6.6
6.5
6.4 | | Aug. 1-10 | 0 0 60.5 | 23
-21
18
11

14
9.0 | | 36
46
50
26

36
42 | 3.4
4.3
5.0
2.4

3.5
4.2 | | 12
14
16
11
1-
13 | 134
168
180
93
104
131 | 22
23
27
23

26
28 | 11
14
18
12
163
12
27 | .5 | 2.2
1.5
1.0
3.5

1.0
.8 | | b197
b225
b244
145

b191
b230 | .27
.31
.33
.20

.26 | 23.7 | 104
132
145
75
102
104
122 | 0
0
0
0
17
0
2 | 31
28
28
38

32
35 | .9
.9
.9
1.1

1.0
1.2 | 297
351
394
250
766
300
377 | 7.6
7.8
7.6
7.4
7.7
7.7 | | Weighted average | | 13 | | 32 | 3.2 | | 21 | 106 | 26 | 14 | 0.5 | 3.7 | | 167 | 0.23 | 41.1 | 93 | 6 | 33 | 0.9 | 285 | | a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at $180\,^{\circ}\text{C}\text{.}$ RED RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS | | i | | | Cal- | Mag. | - | Bicar- | Sul- | Chlo- | Fluo | N. | è | Ω̈́ | Dissolved solids
(calculated) | lids | Har | Hardness
as CaCO, | Per- | So- | Specific
conduct- | | |--------------------|-----------------|---------------------|------|--------------|--------------|--------------------------|--|----------------|---|-------------|------------------|-------------------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|------------------------------|------| | Date of collection | charge
(cfa) | (SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium sium (Na) (K) | bonate
(HCO,) | fate
(SO,) | ride
(CI) | ride
(F) | (NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | Ha | | | | | | | | 2985. | 100000 | PRAIRIE DOG TO | TOWN FORK R | RED RIVE | RIVER NEAR BRICE | SRICE | | | | | | | | | | | Mar. 24, 1959 | a0.01 | | | 255 | 132 | 1,220 | 248 | 849 | 1,950 | | | | | | | 1,180 | 716 | 69 | 1.3 | 7.210 | 6.7 | | | | | | | | M | MULBERRY CREEK AT STATE HIGHWAY 70 NEAR BRICE | WEEK AT | STATE HIGH | WAY 70 | NEAR BR | ICE | | | | | | | | | | | Mar. 24, 1959 | | | | 240 | 219 | 22.7 | 173 | 2,190 | 228 | | | | | | | 2,250 | 2,110 | 18 | 2.1 | 3,860 | 7.9 | | | | | | | | LI | LITTLE RED RIVER AT STATE HIGHWAY 70 NEAR TURKEY | NIVER AT | STATE HIG | SHWAY 70 | NEAR TO | JRKEY | | | | | | | | | | | Mar. 24, 1959 | a0.02 | | | 1,770 | 1,050 | 97,700 | 105 | 5,290 | 102,000 | | | | | | | 8,750 | 8,660 | 76 | 301 | 132,000 | (D) | | | | | | | | | ESTE | LINE SAI | ESTELLINE SALT SPRING AT ESTELLINE | AT ESTE | TLINE | | | | | | | | | | | | Feb. 12, 1959 | 0.4 | | | 1,460 | 273 | 17,100 | 139 | 4,230 | 26,300 | | | | | | | 4,760 | 4,650 | 89 | 107 | 61,600 | 6.1. | | , | | | | SALT | CREEK AT | T COUNTY ROAD CONNECTING | | FM ROAD 1 | ROAD 1619 AND U | US HIGHWAY | 83 | ABOUT 10 | MILES | NORTHWEST | OF CHILDRESS | SSS | | | | | | | Mar. 24, 1959 | | | | 1,020 | 210 | 5,910 | 109 | 2,820 | 9,380 | | | | | | | 3,410 | 3,320 | 42 | 77 | 27,200 | 7.5 | | | | | | | | PRAIRIE DOG | G TOWN FORK | RED | RIVER AT US | S HIGHWAY | Y 83 NE | 83 NEAR CHILDRESS | ORESS | | | | | | | | | | Mar. 24, 1959 | | | | 1,780 | 389 | 22,400 | 82 | 5,200 | 34,900 | | | | | | | 070'9 | 5,970 | 89 | 125 | 77,200 | 9.0 | | | | | | | | | BUCK CREEK | EK AT FM | ROAD 338 | NEAR | WELLINGTON | , | | | | | | | | | | | Mar. 22, 1959 | a 0.08 | | | 390 | 187 | 125 | 247 | 1,610 | 76 | | | | | | | 1,740 | 1,540 | 13 | 1.3 | 2,860 | 7.8 | | | | | | | | | 299 | 2995.7. RED |) RIVER NEAR QUANAH | TAR QUAN | АН | | | | | | | | | | | | Mar. 25, 1959 | | | | 721 | 197 | 2,670 | 154 | 2,310 | 4,170 | | | | | | | 2,610 | 2,480 | 69 | 23 | 14,300 | 7.7 | | | | | | | | SALT FORK RED | RIVER AT | COUNTY | RIVER AT COUNTY ROAD ABOVE BARTON CREEK NEAR LELIA LAKE | : BARTON | CREEK | VEAR LEI | IA LAKE | | | | | | | | | | Mar. 22, 1959 | a2 | | | 99 | 26 | 126 | 216 | 150 | 147 | | | | | | | 266 | 89 | 51 | 3.4 | 1,080 | 8.0 | | | | | | | | | BARTON (| REEK 7 N | BARTON CREEK 7 MILES NORTH OF LELIA LAKE | TH OF LE | LIA LAKI | 6-3 | | | | | | | | | | | Mar. 22, 1959 | а3 | 36 | | 112 | 7.7 | 276 | 228 | 402 | 332 | | 6.0 | | 1,320 | 1.80 | | 473 | 286 | 36 | 5.5 | 2,070 | 8.13 | | a Field estimate. | 28 | RED RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS--Continued | | | | | Cal- | Mag- | So- Po- | Bicar- | Sul- | Chlo- | Fluo | ż | ģ | Dis. | Dissolved solids
(calculated) | sp (| Hardness
as CaCO ₃ | iCO, | Per- | . k | Specific
conduct- | | |--------------------|-------------------------|-------------------------------|------|---------------|--------------|---|--|---------------|--|-------------|----------------|------------|------------------------------|----------------------------------|--------------------|----------------------------------|------------------------|-------------|--------------------------|------------------------------|-----| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca.) | sium
(Mg) | dium tas- | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | Hd | | | | | | | | SALT FORK | RED | RIVER AT CO | COUNTY ROAD | | 8 MILES NORTH | OF QUAIL | 1 | | | | | | | | | | Mar. 22, 1959 | a0.25 | | | 355 | 98 | 268 | 169 | 1,240 | 315 | | | | | | | 1,290 | 1,150 | 31 | 3.2 | 3,050 | 7.7 | | | | | | | | | 3000. 84 | LT FORK | SALT FORK RED RIVER NEAR WELLINGTON | NEAR W | ELLINGTO | NC | | | | | | | | | | | Mar. 22, 1959 | 8.5 | | | 545 | 92 | 188 | 139 | 1,650 | 225 | | | | | | | 1,740 | 1,630 | 61 | 2.0 | 3,190 | 7.6 | | | | | | | | SALT F | FORK RED R | VER AT S | RIVER AT STATE HIGHWAY 203 NEAR WELLINGTON | WAY 203 | NEAR WE | ELLINGT | Z. | | | | | | | | | | Mar. 23, 1959 | 48 | | | 630 | 119 | 271 | 106 | 1,980 | 355 | | | | | | | 2,060 | 1,970 | 22 | 2.6 | 3,940 | 7.9 | | | | | | | | | RED RIV | ER AT US | RED RIVER AT US HIGHWAY 283 NEAR ODELL | 283 NEA | R ODELL | | | | | | | | | | | | Mar. 25, 1959 | | | | 595 | 169 | 1,650 | 114 | 1,960 | 2,580 | | | | | | | 2,180 | 2,090 | 62 | 1.5 | 046.6 | 0.8 | | | | | | | | NORTH FORK RED RIVER ABOVE MCLELLAN CREEK 34 | D RIVER A | SOVE MCLE | TLLAN CREE | IK 3½ MI | MILES WEST OF | r of KE | KELLERVILLE | | | | | | | | | | Mar. 22, 1959 | a6 | | | 208 | 112 | 335 | 149 | 156 | 1,010 | | | | | | | 980 | 858 | 73 | 4.7 | 3,560 | 7.9 | | | | | | | | MCLELLAN CREEK AT MOUTH AT COUNTY ROAD 31/2 MILES WEST OF KELLERVILLE | K AT MOUT | H AT COU | NTY ROAD | 3½ MILE | S WEST O | F KELLE | RVILLE | | | | | | | | | | Mar. 22, 1959 | al 5 | 28 | | 70 | 1.7 | 107 | 235 | 103 | 126 | | 0.5 | | 268 | 0.77 | | 244 | 52 | 67 | 3.0 | 156 | 8.2 | | | | | | | | NORTH FO | NORTH FORK RED RIVER AT COUNTY ROAD 6 MILES SOUTHWEST OF WHEELER | TER AT CO | UNTY ROAL | 6 MILE | S SOUTH | WEST OF | WHEELER | | | | | | | | | | Mar. 22, 1959 | alo | | | 134 | 44 | 288 | 159 | 253 |
530 | | | | | | | 515 | 384 | 55 | 5.5 | 2,320 | 8.0 | | | | | | | | | 3013. | ORTH FOR | NORTH FORK RED RIVER NEAR SHAMROCK | TER NEAR | SHAMRO | × | | | | | | | | | | | Mar. 22, 1959 | a6 | | | 235 | 67 | 310 | 159 | 565 | 528 | | | | | | | 790 | 099 | 949 | 4.8 | 2,740 | 8.0 | | | | | | | | | UNNAM | ED CREEK | UNNAMED CREEK 3 MILES EAST OF TWITTY | SAST OF | TWITTY | | | | | | | | | | | | Mar. 21, 1959 | a0.6 | | | 790 | 143 | 70 | 225 | 1,660 | 35 | | | | | | | 1,810 | 1,630 | 00 | 0.7 | 2,760 | 7.8 | | | | | | | | | 30 | 3033. ELM | ELM CREEK NEAR SHAMROCK | AR SHAMB | OCK | | | | | | | | | | | | Mar. 22, 1959 | a2.0 | 25 | | 225 | 33 | 104 | 191 | 607 | 112 | | 0.2 | | 1,190 | 1.62 | | 697 | 565 | 24 | 1.7 | 1,580 | 7.9 | | a Field estimate. | RED RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS--Continued | | ë | | | Cal- | Mag- | Š | Ъ. | Bicar- | Sul- | Chlo- | Fluo | N. | Bo- | 0) | (calculated) | | as CaCO, | g g | Per- | So-
dium | Specific
conduct- | | |--------------------|-----------------|---------------------|------|--------------|--------------|--|---------------|-------------------------------|-----------------|--|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|----------------------|----------------| | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | (NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | mhos at
25° C) | H _d | | | | | | | | | | ELM CRE | ELM CREEK BELOW | WOLF CREEK NEAR LUTIE | EK NEAR | LUTIE | | | | | | | | | | | | Mar. 22, 1959 | 34 | 13 | | 528 | 85 | 6 | 76 | 115 | 1,610 | 70 | | 4.0 | | 2,460 | 3.35 | | 1,670 | 1,570 | 11 | 1.0 | 2,670 | 7.8 | | | | | | | | | 14 | RED RIVER AT | AT US H | US HIGHWAY 183 NEAR OKLAUNION | 3 NEAR (| OKLAUNIO | N | | | | | | | | | | | Mar. 25, 1959 | | | | 562 | 192 | 1,920 | 0 | 113 | 1,850 | 3,080 | | | | | | | 2,190 | 2,100 | 99 | 1.8 | 11,300 | 7.4 | | | | | | | | | 30 | 3077. ROA | RING SPR. | ROARING SPRINGS NEAR | | ROARING SPRINGS | S | | | | | | | | | | | Mar. 20, 1959 | al.5
1.26 | | | 82 | 27 | 99 62 | 8.2 | 318 | 75 | 85 | | | | | | | 316 | 99 | 31 | 9.1 | 956 | 7.7 | | | | | | | | | MIDE | LE PEASE | RIVER 14 | MIDDLE PEASE RIVER 14 MILES NORTHEAST OF PADUCAH | ORTHEAST | C OF PAD | UCAH | | | | | | | | | | | Feb. 11, 1959 | al.0 | | | 1,290 | 212 | 10,900 | | 122 | 3,650 | 16,900 | | | | | | | 060'7 | 3,990 | 8.5 | | 44,300 | 8.0 | | | | | | | | SALT SPRINGS TRIBUTARY TO MIDDLE PEASE RIVER | NGS TRIB | UTARY TO | MIDDLE 3 | PEASE RIV | ER 14 M | 14 MILES NORTHEAST OF | THEAST | OF PADUCAH | tet | | | | | | | | | Feb. 11, 1959 | a0.02 | | | 1,390 | 236 | 13,500 | | 108 | 3,980 | 21,100 | | | | | | | 077,7 | 4,350 | 87 | | 52,000 | 7.9 | | | | | | | | | PEA | SE RIVER | AT STATE | PEASE RIVER AT STATE HIGHWAY 104 NEAR KIRKLAND | 104 NE | AR KIRKL | AND | | | | | | | | | | | Mar. 21, 1959 | | | | 1,180 | 242 | 7,500 | 0 | 149 | 3,220 | 11,900 | | | | | | | 3,940 | 3,820 | 81 | 52 | 32,600 | 7.8 | | | | | | | | Ed. | PEASE RIVE | RIVER AT I. | W. TABOR RANCH | on. | MILES SC | SOUTHWEST | OF QUANAH | NAH | | | | | | | | | | Mar. 21, 1959 | | | | 926 | 133 | 3,560 | 0 | 134 | 2,680 | 5,510 | | | | | | | 2,930 | 2,820 | 7.3 | 29 | 18,000 | 7.9 | | | | | | | | | - E | RED RIVER | AT US HEG | HIGHWAY 281 | | NEAR BURKBURNETT | H | | | | | | | | | | | Mar. 25, 1959 | | | | 537 | 187 | 2,190 | 0 | 120 | 1,790 | 3,480 | | | | | | | 2,110 | 2,010 | 69 | 21 | 12,100 | 7.3 | | | | | | | | NORTH V | NORTH WICHITA | RIVER AT | AT COUNTY F | ROAD CROSSING | ~ | MILES NORTHEAST | RTHEAST | OF CHALK | | | | | | | | | | Mar. 18, 1959 | 4.0e | | | 465 | 105 | 321 | | 241 | 1,350 | 485 | | | | | | | 1,590 | 1,390 | 30 | 3.5 | 3,760 | 7.9 | | | | | | | | | NORTH | NORTH WICHITA RIVER | RIVER AT | FM ROAD | 1038 NE | FM ROAD 1038 NEAR HACKBERRY | BERRY | | | | | | | | | | | Mar. 18, 1959 | | | | 545 | 129 | 589 | 6 | 148 | 1,670 | 930 | | | | | | | 1,890 | 1,770 | 07 | 5.9 | 5,220 | 7.8 | RED RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN RED RIVER BASIN IN TEXAS--Continued | o A | PH DH | | 7.6 | | 7.8 | | 7.8 | | 7.5 | | 7.9 | | 7.3 | | 8.0 | | 8.1 | | 7.6 | | 7.2 | |----------------------------------|---------------------------------|--|---------------|---|---------------|--|---------------|--------------------------------|---------------|--|---------------|--|---------------|--|---------------|-----------------------------------|---------------|-------------------------------|---------------|---------------------------|---------------| | Specific
conduct- | (micro-
mhos at
25° C) | | 47,300 | | 23,800 | | 21,500 | | 11,700 | | 10,200 | | 14,000 | | 39,200 | | 36,300 | | 1,890 | | 2,220 | | So- | adsorp-
tion
ratio | | 81 | | 4.5 | | 34 | | 14 | | 11 | | 61 | | 63 | | 50 | | 6.0 | | 10 | | Per- | so-
dium | | 86 | | 18 | | 7.5 | | 5.7 | | 67 | | 999 | | 83 | | 78 | | 62 | | 76 | | ,
00 | Non-
carbon-
ate | | 4,160 | | 2,490 | | 3,080 | | 3,010 | | 2,940 | | 2,890 | | 4,020 | | 056,4 | | 254 | | 178 | | Hardness
as CaCO, | Cal-
cium,
magne-
sium | | 4,250 | | 2,620 | | 3,170 | | 3,110 | | 3,040 | | 3,010 | | 4,130 | | 5,060 | | 350 | | 250 | | ids
d) | Tons
per
day | | | DUCAH | | | | | | | | | | | | | | | | | | | Dissolved solids
(calculated) | Tons
per
acre-
foot | | | NEAR PA | | | | | | | | | | | | | | | 95.1 | | 1.63 | | Dis. | Parts
per
mil-
lion | | | OF COTTLE-FOARD COUNTY LINE NEAR PADUCAH | | | | | | | | UTHRIE | | THRIE | | | | | 1,070 | | 1.200 | | Bo. | ron
(B) | DUCAH | | FOARD CC | | TRUSCOTT | | | | RIE | | R NEAR G | | ST OF GU | | N | | | | | | | ź | (NO,) | ST OF PA | | COTTLE- | | B3 NEAR | | HRIE | | OF GUITH | | ITA RIVE | | MILES EA | | BENJAMI | | STT | 0.4 | TA | 0.0 | | Fluo- | ride
(F) | SOUTHEAS | | WEST OF | | GHWAY 28 | | AT CUT | | ES EAST | | гн итсн | | TELD 6 t | | ER NEAR | | HITA FAI | 0.3 | HENRIET | 0 7 | | Chlo- | ride
(CI) | 8 MILES | 18,700 | 1 MILE | 8,020 | STATE HI | 6,930 | TA RIVER | 2,990 | R 3½ MILI | 2,720 | Y TO SOU | 3,980 | AN OIL F | 14,900 | HITA RIV | 13,400 | A AT WIC | 450 | LONG CREEK NEAR HENRIETTA | 660 | | Sul- | fate
(SO,) | AT MOUTH | 3,950 | CROSSING | 2,610 | RIVER AT | 2,890 | SOUTH WICHITA RIVER AT GUTHRIE | 2,720 | HITA RIVE | 1,990 | TRIBUTAR | 2,500 | AT BATEM | 3,230 | SOUTH WICHITA RIVER NEAR BENJAMIN | 3,680 | LAKE WICHITA AT WICHITA FALLS | 175 | LONG CRE | 78 | | Bicar- | bonate
(HCO ₃) | SALI CREEK AI MOUTH 8 MILES SOUTHEAST OF PADUCAH | 116 | NORTH WICHITA RIVER AT COUNTY ROAD CROSSING 1 MILE WEST | 154 | NORTH WICHITA RIVER AT STATE HIGHWAY 283 NEAR TRUSCOTT | 114 | 108 | 125 | SOUTH WICHITA RIVER 3% MILES EAST OF CUTHRIE | 120 | BATEMAN RANCH SPRING IRLBUTARY TO SOUTH WICHITA RIVER NEAR GUTHRIE | 149 | SOUTH WICHITA RIVER AT BATEMAN OIL FIELD 6 MILES EAST OF GUTHRIE | 129 | 3118. | 134 | LAI | 118 | | 88 | | Po- | tas-
sium
(K) | SAI | 12,100 | ER AT COU | 5,300 | NORTH | 095' | | 1,860 | 01 | 1,360 | EMAN RANC | 2,450 | UTH WICH! | 9,360 | | 8,180 | | 259 | | 163 | | Š | dium
(Na) | | 12, | HITA RIV | 5, | | 4, | | 1, | | 1, | BAT | 2 , | So | 6 | | 8, | | | | | | Mag- | sium
(Mg) | | 263 | RTH WIC | 121 | | 218 | | 296 | | 199 | | 211 | | 264 | | 387 | | 24 | | 19 | | Cal- | cium
(Ca) | | 1,270 | NO | 851 | | 911 | | 759 | | 890 | | 858 | | 1,220 | | 1,390 | | 101 | | 69 | | | (Fe) | Silica
(SiO ₂) | | | | | | | | | | | | | | | | | | 5.0 | | 0.6 | | i | Dis-
charge
(cfs) | | | | | | | | a0.04 | | a0.4 | | | | | | | | | | 50 | | | Date of collection | | Mar. 18, 1959 | | Mar. 18, 1959 | | Mar. 19, 1959 | | Mar. 19, 1959 | | Mar. 19, 1959 | | Mar. 17, 1959 | | Mar. 19, 1959 | | Mar. 19, 1959 | | Mar. 11, 1959 | | Apr. 18. 1959 | RED RIVER BASIN--Continued | nned | 0000 | |-----------|------| | Conti | | | XAS- | | | IN | | | SASIN | | | VER | | | CED K | | | N IN | 1 | | IKEAM | | | OF S | | | LYSES | | | NS ANA | | | ĭ | | | MISCELLAN | | | E | Dis- | | | | 0000 | | | | | | | | | SIG. | Dissolved solids | ids | Hardness | ness | | 5 | Specific | - | |---------------------------------|---------------------|------|--------------|--------------|--------------|-------------|-------------------------------|---------------|--|-------------|----------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|-----| | -810 | | | Cal- | Mag- | So | - bo | Bicar- | Sul- | Chlo- | Fluo- | ż | Bo- | 0) | (calculated) | (p | SE
SE | o co | Per- | dium | conduct- | | | Date of collection charge (cfs) | (SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | Sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(Cl) | ride
(F) | (NO,) | ron
(B) |
Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | H. | | | | | | | | . RED.R | RIVER ABO | VE LITTL | ABOVE LITTLE WICHITA RIVER NEAR RINGGOLD | RIVER | NEAR RIM | MCGOLD | | | | | | | | 1 | | | Oct. 7, 1958 a275 | 11 | | 238 | 69 | 957 | 7 | 86 | 689 | 1,540 | | 0.0 | | 3,550 | 4.83 | | 878 | 807 | 7.0 | 17 | 5,800 | 10 | | | | | | | | | | CADDO LA | CADDO LAKE NEAR KARNACK | CARNACK | | | | | | | | | | | | | July 22, 1959 | 15 | 80.0 | 8.0 | 2.7 | 23 | 3 | 26 | 1.4 | 31 | 0.2 | 0.2 | | 107 | 0.15 | | 31 | 01 | 19 | 1.8 | 177 | 5.2 | ### SABINE RIVER BASIN ### 220. SABINE RIVER NEAR TATUM, TEX. LOCATION. --At gaging station at bridge on State Highway 43, 5 miles upstream from Potter Creek, 5.2 miles northeast of Tatum, Rusk County, 7 miles downstream from Cherokee Bayou, and at mile 339. DRAINAGE AREA .-- 3,586 square miles . RECORDS AVAILABLE . -- Chemical analyses: February 1952 to September 1959. Water temperatures: February 1952 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 883 ppm Oct. 20; minimum, 92 ppm May 1-6. Hardness: Maximum, 121 ppm Oct. 20; minimum, 31 ppm May 26-30. Specific conductance: Maximum daily, 1,680 micromhos Oct. 20; minimum daily, 145 micromhos May 5. Water temperatures: Maximum, 89°F July 17; minimum, 40°F Jan. 6. EXTREMES, 1952-59.--Dissolved Solids: Maximum, 93 ppm Aug. 21-31, 1956; minimum, 74 ppm Apr. 24-30, 1957. Hardness: Maximum, 121 ppm Oct. 20, 1958; minimum, 22 ppm Apr. 24-30, 1957. Specific conductance: Maximum daily, 1,850 micromhos Oct. 25, 1954, Aug. 31, 1956; minimum daily, 98 micromhos Apr. 29, 1957. Water temperatures: Maximum, 98°F Aug. 13, 1956; minimum, 40°F Jan. 6, 1959. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. Specific conductance: Maximum daily, 1,680 micromhos Oct. 20; minimum daily, 145 micromhos May 5. | | | | | | Chemic | cal anal | yses, in | parts pe | r million | n, water | year Oct | ober 19 | 58 to S | eptember | 1959 | | | | | | | | |--|--|---|--------------|--|---|--------------|---|--|--|--|---|---|------------|--|--|---|---|--|--|---|---|---| | | | | | | | | | | | | | | | Dis | solved so | lids | | iness | | | Specific | | | * | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | (c. | alculated | 1) | as Co | aCO3 | Per- | So-
dium | conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO _i) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25' C) | рН | | Oct. 1-5, 8-10, 1958 Oct. 6-7, 11-19 Oct. 20 Oct. 21-25 Oct. 26-31 Nov. 1-10 Nov. 11-20 Nov. 21-30 | 971
528
472
564
598
257
327
1,083 | 17
20

14
16
20
18
14 | | 12
14
10
15
14 | 3.4
4.6

4.6
3.2
4.7
5.0
5.0 | 1
1
1 | 52
87

19
60
12
08
77 | 29
30
39
29
26
30
30
22 | 17
19

20
15
20
16
23 | 82
140
485
189
93
180
177
125 | | 1.2
1.5

.8
.8
1.0
.5 | | 199
301
883
375
211
a382
a370
a292 | 0.27
.41
1.20
.51
.29
.52
.50 | 522
429
1,130
571
341
265
327
854 | 44
54
121
54
38
57
56
30 | 20
29
89
30
17
32
31
32 | 72
78

83
77
81
81
77 | 3.4
5.1

7.0
4.2
6.5
6.3
4.7 | 359
559
1,680
715
385
687
673
502 | 7.4
7.2
7.4
7.2
7.0
7.2
6.9
6.6 | | Dec. 1-11 | 606
562
611
645 | 16
19
20
19
19 | | 14
15
14
14
17
15 | 5.2
6.5
5.9
6.0
7.2
6.6 | 79 | 64
78
76
1 2.8
96
75 | 20
20
20
20
20
22
23 | 32
34
29
29
39
33 | 103
128
126
134
157
123 | 0.1 | .5
.8
.5
1.0 | | a265
a318
a302
294
347
281 | .36
.43
.41
.40
.47 | 774
520
458
485
604
398 | 56
64
59
60
72
64 | 40
48
43
43
54
46 | 71
72
74
73
74
72 | 3.7
4.2
4.3
4.5
4.9
4.1 | 445
542
522
553
652
534 | 6.8
6.7
6.7
7.0
6.7
6.8 | | Feb. 1-9 | 3,316
3,839
3,200 | 16
16
11
14
12
11 | | 15
16
11
14
14
14
14 | 6.0
7.3
3.8
4.1
4.3
3.4
5.8 | | 78
97
34
46
47
33
65 | 20
16
20
22
20
30
28 | 32
42
26
31
33
25
35 | 129
159
52
72
74
49
104 | ======================================= | .8
.8
1.0
.8
1.2 | | 287
346
149
193
195
152
258 | .39
.47
.20
.26
.27
.21 | 600
1,150
1,740
1,730
2,020
1,310
805 | 62
62
43
52
53
49
66 | 46
46
27
34
36
24
43 | 73
75
63
66
66
59
68 | 4.3
5.0
2.3
2.8
2.8
2.0
3.5 | 540
655
276
343
350
266
464 | 6.8
6.9
6.8
6.7
6.9
6.9 | | Apr. 1-9, 11 | 2,460
4,633
5,736
14,200
7,988
2,321
2,093 | 15
14
11
9.0
8.0
9.8
13
12 | | 18
25
12
10
9.0
10
14
15
8.0 | 6.5
8.0
3.9
3.0
2.5
3.5
5.0
4.2
2.7 | | 3.3
36
25
19
37
53
46
24 | 30
30
18
20
23
26
27
35 | 38
50
26
20
14
17
27
25
15 | 104
190
58
38
28
56
85
69
36 | .2 | 1.0
1.5
1.0
1.0
1.5
1.5
2.0 | | 262
418
157
116
92
148
212
190
106 | .36
.57
.21
.16
.13
.20
.29
.26 | 878
2,780
1,960
1,800
3,530
3,190
1,330
1,070
1,130 | 72
96
46
37
33
39
56
55 | 47
72
31
21
14
18
33
26
16 | 64
72
63
59
56
67
68
64
62 | 3.1
5.1
2.3
1.8
1.4
2.5
3.1
2.7
1.9 | 486
790
290
213
172
277
402
358
198 | 6.5
7.3
6.9
7.2
7.0
6.8
6.3
6.6
6.4 | | June 1-10 | 867
797
455
476
301
2,005 | 15
14
15
19
15
17
12
18 | | 12
14
17
14
21
18
14 | 4.5
4.9
6.0
5.4
7.2
5.9
3.9 | 1 | 45
47
84
68
71
95
82
31 | 25
36
38
40
34
52
31
54 | 18
21
24
21
28
20
17
15 | 75
75
137
106
281
150
131
41 | | 1.2
1.5
1.5
1.2
1.2
1.2
1.2 | | 183
195
a332
255
541
333
276
152 | .25
.27
.45
.35
.74
.45
.38 | 819
456
714
313
695
271
1,490
755 | 48
55
67
57
82
70
51
52 | 28
26
36
24
54
27
26
8 | 67
65
73
72
82
75
78
56 | 2.8
2.8
4.5
3.9
8.2
5.0
5.0 | 351
362
579
475
1,030
629
517
265 | 6.5
6.8
6.5
6.8
6.3
6.8
6.7 | | Aug. 1-4, 12-15 | 200
202
284
470
220 | 19
21
21
21
21
21
20
21 | | 18
22
22
21
12
18
18 | 4.2
5.9
6.7
6.3
4.4
6.4
6.0 | 1 | 51
85
.16
.19
69
98 | 58
73
70
- 56
36
40
50 | 20
17
20
15
17
25
20 | 74
132
182
195
107
159
193 | | 1.2
1.0
.8
1.2
1.2
1.2 | | a236
a341
a422
406
a263
a360
a424 | .32
.46
.57
.55
.36
.49 | 793
184
230
311
334
214
212 | 62
80
82
78
48
72
70 | 15
20
25
32
19
38
28 | 64
70
75
77
76
75
79 | 2.8
4.2
5.6
5.9
4.3
5.0
6.3 | 379
586
751
770
451
642
762 | 6.7
7.0
6.7
7.5
6.7
6.7 | 0.26 Weighted average---- a Residue on evaporation at 180°C. ### 305. SABINE RIVER NEAR RULIFF, TEX. LOCATION.--At gaging station at bridge on State Highway 12, 2.4 miles north of Ruliff, Newton County, 4.2 miles upstream from Kansas City Southern Railway bridge, 4.5 miles downstream from Cypress Creek and at mile 40. from Cypress Creek and at mile 40. DRAINAGE AREA.--9,440 square miles. RECORDS AVAILABLE.--Chemical analyses: October 1945 to September 1946, October 1947 to September 1959. Water temperatures:
October 1947 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 212 ppm Sept. 9, 16-24; minimum, 43 ppm Jan. 31. Hardness: Maximum, 55 ppm Sept. 9, 16-24; minimum, 12 ppm Feb. 1-6. Specific conductance: Maximum daily, 430 micromhos Sept. 18; minimum daily, 75 micromhos Feb. 3. Water temperatures: Maximum, 87°F Aug. 6-7; minimum, 48°F Dec. 19-20, Feb. 3. EXTREMES, 1945-46, 1947-59.--Dissolved solids: Maximum, 411 ppm Dec. 26-27, 1948; minimum, 32 ppm Sept. 23-26, 28-30, 1958. Hardness: Maximum, 65 ppm Dec. 21-22, 1954; minimum, 8 ppm May 20-24, 1953. Specific conductance: Maximum daily, 774 micromhos Dec. 26, 1948; minimum daily, 33 micromhos May 22, 1953. Water temperatures (1947-59): Maximum, 95°F Aug. 12, 1953; minimum, 34°F Jan. 28, 1948. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved sol | | Hard
as Co | | Per- | So- | Specific
conduct- | | |--|--|---|--------------|---|---|-----------------------|--|--|---|--|---|---------------------------------------|------------|--|--|---|--|--|--|---|---|--| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | dium
adsorp-
tion
ratio | ance
(micro-
mhos at
25°C) | рН | | Oct. 1-11, 1958 Oct. 12-16 Oct. 17-31 Nov. 1-10 Nov. 11-20 Nov. 21-30 | 24,480
5,196
3,219
2,633
2,462
4,096 | 9.8
15
17
16
17 | | 5.2
8.0
9.5
12
10 | 1.5
1.9
3.0
3.3
2.8
3.0 | 1
3
4
3 | 4
8
0
4
7 | 18
25
34
34
35
25 | 7.8
12
13
14
11 | 18
24
42
68
54
60 |

 | 0.5
1.0
.2
.0
.0 | | 66
92
132
a182
a154
151 | 0.09
.13
.18
.25
.21 | 4,360
1,290
1,150
1,290
1,020
1,670 | 19
28
36
44
36
38 | 4
8
8
16
8
17 | 61
59
64
69
69 | 1.4
1.5
2.2
2.9
2.6
2.6 | 114
156
229
324
267
278 | 6.8
6.9
7.0
6.6
5.7
6.7 | | Dec. 1-10 | 3,372
2,854
2,830
2,440
2,482
2,931
9,730 | 16
18
18
20
18
17
5.8 | | 9.5
11
9.2
10
10
10 | 3.6
4.0
3.2
3.6
3.6
3.6 | 40 4 | 0
1
8
8
2.2
1
5
4.4 | 28
28
26
30
27
24
6 | 15
19
18
17
17
19
5.8 | 61
64
56
60
64
70
15 | 0.1 | .5
.4
.5
.5 | | a176
172
a170
a183
a182
177
43 | .24
.23
.23
.25
.25
.24 | 1,600
1,330
1,300
1,210
1,220
1,400
1,130 | 38
44
36
40
40
40
23 | 16
21
15
16
18
20
18 | 69
67
70
67
69
71
29 | 2.8
2.7
2.8
2.8
2.8
3.1 | 288
345
275
303
307
328
76 | 6.9
7.0
6.9
7.6
7.0
6.4
6.7 | | Feb. 1-6 | 17,440
13,070
19,100
11,540 | 7.0
10
12
9.4
13
14 | | 3.0
5.1
6.5
4.8
8.5
10
9.8 | 1.1
2.0
2.7
2.1
3.5
4.3
3.6 | 1
2
1
2
3 | 2
8
5
7
6
6 | 6
12
13
10
21
20
22 | 9.0
15
19
14
22
27
24 | 16
24
35
24
36
54
41 | ======================================= | .8
1.0
1.0
1.0
.5
.2 | | 52
81
107
77
120
156
132 | .07
.11
.15
.10
.16
.21 | 2,710
3,810
3,780
3,970
3,740
3,360
2,760 | 12
20
27
20
36
42
40 | 7
10
16
12
18
26
22 | 68
66
67
64
61
65
61 | 1.5
1.8
2.1
1.6
1.9
2.4
2.0 | 91
138
185
135
211
284
235 | 6.2
6.3
6.4
6.4
6.6
6.9 | | Apr. 1-7- Apr. 8-11, 13- Apr. 12. 14-20- Apr. 21-30 May 1-10 May 21-31 May 21-31 | 7,264
11,120
17,990
11,800 | 15
10
11
9.8
11
9.4 | | 10
6.5
7.5
6.5
LL
8.5
9.5 | 3.4
2.0
3.0
2.2
3.6
3.0
3.5 | 2
1
2
1 | 2.5
5
6
5
3
9 | 28
14
18
14
30
20
26 | 22
12
19
15
19
14 | 40
23
36
22
34
31
43 | .2 | 1.0
.4
1.5
.5
.8
.8 | | 136
76
113
78
117
96
128 | .18
.10
.15
.11
.16
.13 | 1,920
1,490
3,390
3,790
3,730
3,270
2,750 | 39
24
31
25
42
34
38 | 16
12
16
14
18
17
16 | 59
58
64
57
54
55
62 | 2.0
1.3
2.0
1.3
1.5
1.4
2.0 | 243
134
202
141
204
182
236 | 6.5
6.1
6.3
6.1
6.8
6.0
7.0 | | June 1-9 | 5,620
4,260
5,133
2,509
2,306
1,863
7,444
8,807 | 13
14
14
13
12
6.4 | | 7.5
8.0
9.0
9.5
7.5
3.5
7.0 | 2.8

3.0
3.7
2.9
2.6
1.1
2.4 | 33331 | 2
-
6
1
4
1
3
6 | 22
28
28
38
36
32
12
26 | 12

14
14
13
9.2
6.2 | 33
60
36
42
46
43
17 |

 | 1.2

.8
.5
.8
.8
.5 | | 102

116
133
137
122
54
134 | .14

.16
.18
.19
.17
.07 | 1,550

1,610
901
853
614
1,090
3,190 | 30
35
32
38
36
29
13
28 | 12
12
10
6
6
3
3 | 62

63
64
67
70
68
74 | 1.8

2.0
2.2
2.4
2.5
1.6
3.0 | 185
278
202
239
238
217
91
237 | 6.6
6.8
6.8
6.4
6.1
6.1
5.8
6.6 | | Aug. 4-10 Aug. 11-21 Aug. 22-31 Sept. 1-8, 10-15 Sept. 9, 16-24 Sept. 25-30 | | 13
14
15
18
15 | | 9.8
9.2
7.5
12
14 | 3.3
2.8
2.4
4.0
4.9
3.5 | 3 2 3 5 5 | 2
0
0
5
5 | 25
31
34
58
56
46 | 17
14
7.6
9.6
12
8.8 | 80
42
25
46
82
58 | | 1.2
1.2
1.0
.8
.8 | | 188
126
96
a166
212
163 | .26
.17
.13
.23
.29 | 2,190
1,010
650
694
728
485 | 38
34
28
46
55
40 | 18
9
0
0
9
2 | 75
66
60
62
68
69 | 3.7
2.2
1.6
2.2
3.2
2.8 | 353
226
156
262
377
281 | 6.4
6.5
6.5
7.3
7.0
7.0 | | Weighted average | 6,723 | 12 | | 7.6 | 2.7 | 2 | 4 | 21 | 15 | 35 | | 0.7 | | 109 | 0.15 | 1,980 | 30 | 13 | 63 | 1.9 | 192 | | a Residue on evaporation at 180°C. SABINE RIVER BASIN -- Continued MISCELLANEOUS ANALYSES OF STREAMS IN SABINE RIVER BASIN IN TEXAS | | | | | | Che | mical an | alyses, | Chemical analyses, in parts per million, water year October 1958 to September 1959 | per mill | ion, wat | er year | October | 1958 to | Septemb | sr 1959 | | | | | | | | |--------------------|-------------------------|-------------------------------|------|--------------|--------------|--------------|-------------|--|---------------|---|-------------|----------|------------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|-----| | S.F. | | | | S. | Mag- | å | Po- | Bicar- | Sul- | Chlo- | Fluo- | ż | Bo- | Ö | Dissolved solids
(calculated) | ids
() | Hardness
as CaCO, | iCO, | Per- | So-
dium | Specific
conduct- | | | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₁) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(C1) | ride
(F) | (NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | | | | | | | 2 | 800 | BIG COW CREEK AT FM ROAD 1416 NEAR BLEAKWOOD | REEK AT | FM ROAD | 1416 NE | AR BLEAK | MOOD | | | | | | | | | | | Mar. 19, 1959 al40 | a140 | 12 | | 3.0 | 6.0 | 3.9 | 0.7 | 12 | 1.4 | | 6.8 0.0 | 0.0 | | 35 | 0.05 | | 11 | - | 41 | 0.5 | 7.7 | 6.8 | | | | | | | | | | TROUT CR | EEK AT S | TROUT CREEK AT STATE HIGHWAY 87 NEAR CALL | HWAY 87 | NEAR CA | 11 | | | | | | | | | | | Mar. 19, 1959 | a20 | 24 | | 2.8 | 1.1 | 8.0 | 1.0 | 18 | 1.8 | 9.8 | 0.1 | 0.2 | | 58 | 0.08 | | 12 | 0 | 58 | 1.0 | 67 | 6.1 | | | | | | | | | | 30 | O. CYPR | 300. CYPRESS CREEK NEAR BUNA | X NEAR I | BUNA | | | | | | | | | | | | Mar. 19, 1959 | 0.4 | 8.4 | | 1.5 | 1.2 | 7.2 |
0.5 | 10 | 1.8 | 9.8 | 0.2 | 0.2 | | 36 | 0.05 | | 6 | 0 | 63 | 1.1 | 36 | 6.0 | | a Field estimate. | ### NECHES RIVER BASIN ### 370. ANGELINA RIVER NEAR LUFKIN, TEX. LOCATION.--At gaging station at bridge on U. S. Highway 59, 200 feet upstream from Procella Creek, 1½ miles downstream from Bayou Loco, 1.5 miles upstream from Southern Pacific Railroad bridge, and 8 miles north of Lufkin, Angelina County. DRAINAGE AREA. -- 1,630 square miles. RECORDS AVAILABLE. -- Chemical analyses: October 1954 to September 1959. Water temperatures: October 1954 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 186 ppm Aug. 27-31; minimum, 63 ppm Apr. 13-14, 18-23. Hardness: Maximum, 53 ppm Feb. 11-14; minimum, 22 ppm Apr. 13-14, 18-23. Specific conductance: Maximum daily, 398 micromhos Dec. 13; minimum daily, 73 micromhos Apr. 19. Water temperatures: Maximum, 87°F Sept. 21; minimum, 38°F Jan. 5, 10. water temperatures: Maximum, A9 r Sept. 2; minimum, 36 r Jan. 5, 10. EXTREMES, 1954-59. --Dissolved solids: Maximum, 412 ppm Nov. 4-18, 26-30, 1954; minimum, 36 ppm Oct. 16-18, 1957. Hardness: Maximum, 76 ppm Nov. 4-18, 26-30, 1954; minimum, 11 ppm Oct. 16-18, 1957. Specific conductance: Maximum daily, 895 micromhos Nov. 10, 1954; minimum daily, 38 micromhos Sept. 21, 1958. Water temperatures: Maximum, 89°F July 9, 1957; minimum, 38°F Jan. 5, 10, 1959. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Во- | | ssolved sol | | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |--|---|--|----------------|--|---|---------------------------------|-----------------------|--|--|--|-------------|--|------------|---|--|---|--|---|--|---|--|---| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25°C) | ρΗ | | Oct. 1-11, 1958 Oct. 12-20 Oct. 21-27 Oct. 28-31 Nov. 1-10 Nov. 19-30 | 3,430
723
404
478
300
301
452 | 15
18
20
18
20
19 | 0.11 | 6.5
- 8.8
7.2
9.5
8.0
7.0
8.5 | 2.9
4.4
3.3
4.5
3.9
3.4
4.0 | 1
2
1
3
2
1
2 | 2
9
9
0
7 | 18
24
26
26
28
27
24 | 12
19
17
18
17
15 | 21
34
24
62
27
22
45 | | 1.0
1.0
1.0
.0
.8
.2 | | 81
119
104
164
111
97
132 | 0.11
.16
.14
.22
.15
.13 | 750
232
113
212
89.9
78.8 | 28
40
32
42
36
31
38 | 13
20
10
21
13
9 | 51
55
57
67
55
54
63 | 1.1
1.5
1.5
2.6
1.4
1.3
2.1 | 138
200
160
282
185
161
237 | 7.0
7.0
7.1
7.5
7.4
7.3
7.0 | | Dec. 1-10 | 488
412
336
418
396
411 | 17
17
18
17
16
14 | .12 | 8.0
9.0
7.2
8.2
8.8
8.5 | 4.1
4.5
3.6
4.0
4.7
4.3 | 2
3
2
3
2
3 | 7
2
0
9 | 23
22
24
22
24
21 | 23
25
21
22
26
26 | 33
54
28
44
40
48 | | .0
.2
.1
.2
1.2 | | 120
a167
a120
a148
a142
145 | .16
.23
.16
.20
.19 | 158
186
109
167
152
161 | 37
41
33
37
41
39 | 18
23
13
19
22
22 | 59
66
60
64
60
65 | 1.7
2.5
1.7
2.2
1.9
2.3 | 206
278
186
247
236
258 | 6.8
7.1
7.1
7.0
6.7
6.9 | | Feb. 1-10 | 779
944
1,962
2,441
1,482
827
563 | 15
15
14
14
16
14 | | 8.0
10
4.8
6.0
8.0
9.0
8.5 | 4.7
6.8
3.4
3.8
4.5
5.0
5.3 | 2
3
1
1
2
3
2 | 7
1
4
7 | 16
15
15
16
18
20
24 | 30
41
16
18
27
32
27 | 35
56
15
21
38
43
34 | | .4
.2
.8
.8
.5
.8 | | a137
173
72
86
a143
a155
a137 | .19
.24
.10
.12
.19
.21 | 288
441
381
567
572
346
208 | 39
53
26
31
38
43
43 | 26
41
14
18
24
27
23 | 58
61
49
51
60
61
55 | 1.7
2.2
1.0
1.1
1.9
2.1
1.6 | 220
318
115
141
222
254
217 | 6.8
7.1
6.9
6.9
5.9
6.9 | | Apr. 1-4, 10-12 | 2,897
10,580
5,006
782 | 14
13
14
15
14
10
10
15 | | 9.0
11
4.5
7.8
9.0
9.0
5.5
9.0
6.8 | 4.9
6.0
2.7
3.5
4.5
5.0
3.3
4.4
3.6 | 20 4
8.0 1
2 4
2 1 | 1.9
4
3
1 | 28
24
18
20
26
12
21
36
30 | 26
27
12
18
20
18
18
15 | 27
68
10
20
34
72
24
24 | 0.2 | .5
.4
1.0
.8
1.0
1.5
1.0 | | 118
179
63
89
118
162
92
105
86 | .16
.24
.09
.12
.16
.22
.13
.14 | 220
277
377
545
923
4,630
1,240
222
344 | 43
52
22
34
41
43
27
41
32 | 20
32
8
17
20
33
10
11 | 49
64
41
47
55
67
61
49
48 | 1.3
2.5
.7
1.0
1.6
2.7
1.7
1.2 | 204
339
98
150
212
314
150
178
134 | 6.9
6.8
5.7
7.1
6.7
6.4
6.5
5.7
5.8 | | June 9-14, 17-22, 29
June 15-16; 23-28, 30
July 1-10
July 11-20 | 611
432
- 365
181
538 | 18
17
19
20
17 | | 8.8
9.5
9.0
8.5
7.8 | 4.5
4.7
4.8
4.7
3.9 | 1
3
2
2
2 | 7
5
3 | 36
33
32
42
30 | 15
17
21
15 | 24
56
34
28
24 | | 1.2
.2
1.2
1.2 | | 108
157
130
121
108 | .15
.21
.18
.16 | 178
183
128
59.1
157 | 40
43
42
41
36 | 11
16
16
6 | 49
65
56
55
55 | 1.2
2.5
1.7
1.6
1.5 | 174
288
207
190
168 | 7.0
6.4
6.7
6.9
6.4 | | Aug. 1-10 | 770
165
138
152
176
79.1
65.0 | 19
21
20
16
20
19 | ::
::
:: | 9.0
8.8
8.0
9.8
7.0
6.8
6.8 | 4.4
4.7
4.1
5.0
4.0
3.7
3.8 | 2 2 | 1 3 | 19
34
38
30
38
38
42 | 27
20
14
14
15
13 | 37
27
28
71
25
24
22 | | .5
1.0
1.0
.8
.8 | | 132
120
117
a186
113
108
106 | .18
.16
.16
.25
.15
.15 | 274
53.5
43.6
76.3
53.7
23.1
18.6 | 41
41
37
45
34
32
33 | 25
13
6
20
3
1 | 58
53
57
68
59
59
58 | 1.7
1.4
1.6
2.8
1.6
1.7 | 222
194
187
316
183
175
173 | 6.7
6.7
6.4
6.3
6.7
6.4
6.7 | | Weighted average | 994 | 14 | | 7.5 | 4.0 | 2 | 2 | 22 | 19 | 32 | | 0.9 | | 111 | 0.15 | 298 | 35 | 17 | 58 | 1.6 | 190 | | a Residue on evaporation at 180°C. ### NECHES RIVER BASIN--Continued ### 410. NECHES RIVER AT EVADALE, TEX. LOCATION. -- At gaging station at bridge on U. S. Highway 96, 200 feet upstream from Gulf, Colorado and Santa Fe Railway bridge at Evadale, Jasper County, 600 feet downstream from Mill Creek, 15 miles LOCATION.--At gaging station at bridge on U. S. Highway 96, 200 feet upstream from Gulf, Colorado and Santa Fe Railway b upstream from Village Creek and at mile 55. DRAINAGE AREA.--7,908 square miles. RECORDS AVAILABLE.--Chemical analyses: October 1947 to September 1959. Water temperatures: October 1947 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 156 ppm Mar. 6; minimum, 52 ppm Oct. 1-10. Hardness: Maximum, 48 ppm Mar. 6; minimum, 18 ppm Oct. 1-10. Specific conductance: Maximum daily, 295 micromhos Jan. 4; minimum daily, 61 micromhos Oct. 4. Water temperatures: Maximum, 88°F July 1, 5-6, 11-13; minimum, 46°F Jan. 5-7, 11. EXTREMES, 1947-59.--Dissolved solids: Maximum, 222 ppm Oct. 21-31, 1956; minimum, 35 ppm Sept. 21-22, 24, 1958. Hardness: Maximum, 70 ppm Nov. 1-10, 1947; minimum, 14 ppm May 3-15, 1957, Oct. 27-31, 1957, Sept. 21-22, 24, 1958. Specific conductance: Maximum daily, 422 micrombos Jan. 25, 1957; minimum daily, 44 micromhos Sept. 22, 1958. Water temperatures: Minimum, 37°F Jan. 30-31, 1948, Jan. 31, 1949. REMARKS.-Records of specific conductance of daily samples available in district office at Austin, Tex. Records of disc REMARKS. -- Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper | | | | | | Che | mical a
 nalyses, | in parts | per mill | ion, wate | r year | October | 1958 to | Septembe | r 1959 | | | | | | | | |---|---|---|--------------|--|--|--------------|-----------------------------------|--|----------------------------------|--|----------------------------------|-------------------------------|------------|--|--|--|----------------------------------|-------------------------------------|--|--|---|---------------------------------| | | | | | | | | | | | | | | | Dis | solved sol | ids | Hard | | | So- | Specific | | | | Mean | C'11 | 7 | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | (c | alculated | 1) | as Co | 1CO2 | Per- | dium | conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₂) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-10, 1958 Oct. 11-20 Oct. 21-31 Nov. 11-20 Nov. 21-30 | 17,780
7,197
1,615
1,597
1,438
2,788 | 10
13
14
18
18 | | 4.8
7.0
8.5
9.8
10
9.5 | 1.5
2.4
2.8
2.9
2.8
2.7 | | 2.8
12
17
20
22
25 | 16
22
28
29
33
34 | 9.2
12
15
17
16 | 8.8
16
22
27
28
30 | 0.0
.0
.0
.2
.1 | 0.5
.5
.2
.8
.8 | | 52
74
94
110
114
120 | 0.07
.10
.13
.15
.16 | 2,500
1,440
410
474
443
903 | 18
28
32
36
36
36 | 5
10
10
12
10
6 | 40
49
53
55
57
61 | 0.7
1.0
1.3
1.5
1.6 | 76
123
159
181
191
195 | 7.1
7.1
7.0 | | Dec. 1-10 | 1,914
1,227
1,972
1,529
1,945
1,608
5,077 | 16
18
16
20
19
18
8.4 | | 8.8
8.8
8.5
9.0
9.0
9.0 | 3.5
3.6
3.6
3.8
3.7
3.7 | 25 | 24
25
25
26
28
29 | 36
40
34
32
32
32
32 | 18
17
18
20
21
22 | 28
28
30
35
35
36
14 | .2
.1
.1
.2
.2
.2 | .8
.5
.8
.0
.4 | | 117
121
119
132
a140
a139
63 | .16
.16
.16
.18
.19
.19 | 605
401
634
545
735
603
864 | 36
37
36
38
38
38 | 7
4
8
12
12
12
12 | 59
59
60
57
62
63
54 | 1.7
1.8
1.8
1.8
2.0
2.1 | 196
201
201
221
218
222
111 | 7.1
7.0
7.6
6.8
7.1 | | Feb. 6-20 | 7,185
9,835
7,724
5,660
5,298
3,743 | 12
11
12
14
13
14 | | 7.1
5.6
7 2
13
8.8 | 2.8
2.5
2.6
3.8
3.2
3.9 | | 19
15
19
33
21
24 | 19
14
13
16
15
21 | 21
18
26
32
26
30 | 22
18
22
50
29
32 | .2
.2
.0
.1
.0 | .8
.8
2.0
.5 | | 94
78
96
156
108
124 | .13
.11
.13
.21
.15 | 1,820
2 070
2,000
2,380
1,540
1,250 | 29
24
28
48
35
41 | 14
13
18
35
22
24 | 58
57
59
60
57
56 | 1.5
1.3
1.5
2.0
1.6
1.6 | 159
134
162
273
192
218 | 6.6
6.5
7.1
6.4 | | Apr. L-11 | 3,341
12,790
24,500
10,880
8,604
12,030 | 14
11
9.4
11
12
9.4 | | 10
8.5
5.0
8.0
10
7.5 | 4.2
2.8
1.8
2.9
3.8
3.0 | | 2.8
2.6
13
22
17 | 26
20
16
18
22
22 | 28
21
13
18
23
12 | 32
22
10
18
32
26 | .2
.2
.2
.2
.2 | .5
1.0
.5
1.0
1.0 | | 128
94
59
81
115
87 | .17
.13
.08
.11
.16 | 1,150
3,250
3,900
2,380
2,670
2,830 | 42
32
20
32
40
31 | 21
16
7
17
22
13 | 52
54
44
47
54
55 | 1.5
1.4
.8
1.0
1.5 | 221
164
92
144
206
162 | 7.1
6.6
6.2
6.0 | | June 1-10 | 6,216
7,007
2,908
1,950
1,492
7,977 | 14
14
14
17
18
12 | | 9.0
8.0
9.0
10
10
7.8 | 3.2
3.4
3.7
3.6
3.7
2.4 | | 14
12
14
26
25
17 | 30
30
36
42
44
26 | 11
11
11
13
13
14 | 20
16
18
33
30
21 | .1
.1
.3
.3 | 1.0
1.0
1.0
1.0 | | 87
80
89
125
123
88 | .12
.11
.12
.17
.17 | 1,460
1,510
699
658
495
1,900 | 36
34
38
40
40
30 | 11
10
8
6
4
8 | 46
43
45
59
57
56 | 1.0
.9
1.0
1.8
1.7 | 155
137
147
205
199
147 | 6.3
6.4
7.3
6.7 | | Aug. 1-10 | 4,842
2,345
1,545
1,451
1,077
535 | . 13
15
17
16
20
20 | | 6.0
7.0
7.8
9.5
9.5 | 1.9
2.5
3.2
3.7
3.7
4.2 | | 13
14
18
27
23
22 | 22
25
30
32
36
44 | 14
18
17
18
17 | 13
14
20
37
28
27 | .2
.2
.2
.2
.2
.2 | .8
.8
.8
.8 | | 73
84
99
128
120
121 | .10
.11
.13
.17
.16 | 954
532
413
501
349
175 | 23
28
32
38
38
42 | 5
8
8
12
9
6 | 56
53
54
61
56
53 | 1.2
1.4
1.9
1.6
1.5 | 116
128
159
224
195
197 | 6.0
6.2
6.3
6.5 | | Weighted average | 5,162 | 12 | | 7.5 | 2.8 | | 17 | 22 | 17 | 21 | 0.1 | 0.8 | | 89 | 0.12 | 1,240 | 30 | 12 | 55 | 1.3 | 151 | | a Residue on evaporation at 180°C. NECHES RIVER BASIN -- Continued MISCELLANEOUS ANALYSES OF STREAMS IN NECHES RIVER BASIN IN TEXAS | discharge (SiO ₂) (Pe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Fe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Fe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Fe) (Ca) (Mg) (Na) diwn from figure (SiO ₂) (Na) diwn from from from from from from from from | discrete (SiO ₂) (Fe) (Ca) (Mg) (Na) (K) (HCO ₂) (SO ₃) (C1) (Fe) (RO ₃) (SO ₄) (Fe) (RO ₄) | | Mean | |
Cal- | Mag- | Š | Po- | Bicar- | Sult | Chlo | Fluo | ż | Bo- | | Dissolved solids
(calculated) | olids
ed) | Ha | Hardness
as CaCO, | Per- | So- | Specific
conduct- | | |--
--|--------------------|-------------------------|-------------------------------|------------------|--------------|--------------|---------------------|-------------------------------|----------------------------|--------------|-------------|----------|--------|------------------------------|----------------------------------|--------------------|---------------------------------|----------------------|------|--------------------------|--------------------------------------|-----| | 13 9.2 1.5 5.3 0.6 29 3.0 9.5 0.0 0.0 56 0.08 29 5 28 0.4 88 1.890 1.5 1.5 1.2 1.4 2.8 54 0.1 0.0 0.0 1.8 0.16 1.5 | 277 15 6.2 2.1 3 0.6 129 3.0 9.5 0.0 0.0 0.0 56 0.09 29 5 28 0.4 88 1.890 8.5 1.3 10.6 29 3.0 9.5 1.3 10.6 1.890 8.5 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) |
cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fare
(SO ₂) | ride
(Ci) | ride
(F) | 1631 | 3 84 | Parts
per
mil-
lion | | Tons
per
day | Cal-
cium,
magne-
sium | | 1 - | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | 13 9.2 1.5 5.3 0.6 29 3.0 9.5 0.0 0.0 56 0.08 29 5 28 0.4 88 415 VILLAGE CREEK NEAR KOUNTZE | 15 15 15 16 29 3.0 9.5 0.0 0.0 56 0.08 29 5 28 0.4 88 297 21 21 21 21 21 21 21 2 | | | | | | | | CYPRESS C | REEK AT | US HIGHWA | N 190 N | EAR WOOL | WILLE | | | | | | | | | | | 277 15 6.2 2.1 8.7 1.2 10 3.6 16 7.1 0.0 118 0.16 24 13 73 2.7 214 2.8 54 0.1 0.0 49 0.07 15 15 15 2.7 2.7 2.14 2.8 54 0.1 0.0 15 2.0 1.0 0.0 15 2.0 1.0 0.0 15 2.0 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0. | 277 15 6.2 2.1 31 14 2.8 54 0.1 0.0 18 0.16 24 13 73 2.7 214 2.1 8.9 9.0 9.0 9.0 8.7 1.2 10 3.8 16 1.1 5.5 49 0.1 6.0 15 15 7 53 1.0 8.3 | ir. 19, 1959 | | 13 | 9.2 | 1.5 | 5.3 | | Ц | 3.0 | | Н | \Box | | 56 | | | 29 | 5 | 28 | 5.0 | 888 | 6.8 | | 1,890 9.0 6.2 2.1 1.2 1.0 1.0 3.6 1.6 1.1 0.0 1.18 0.16 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 1,890 9.0 6.2 2.1 8.7 1.2 10 3.6 16 0.1 0.0 118 0.16 15 15 17 3.1 2.7 214 1.0 5 18 0.16 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | | | | | | | . 41 | 5. VILL | AGE CREEK | K NEAR KI | OUNTZE | | | | | | | | | | | | CYPRESS CREEK AT STATE HIGHMAY 326 NEAR KOUNTZE 7.8 | CYPRESS CREEK AT STATE HIGHWAY 326 NEAR KOUNTZE 16 4.4 106 14 0.0 196. 0.2 1.0 338 0.46 58 46 80 6.1 580 | ar. 19, 1959 | 1,890 | 15 | 3.2 | | 8.7 | | 14 | 3.6 | | 0.1 | | | 118 | 0 | | 24 | 13 | 73 | 1.0 | 214 | 5.9 | | 7.8 16 4.4 106 14 0.0 196 0.0 196 0.1 1.0 1 338 0.46 36 46 80 6.1 680 | 7.8 16 4.4 106 14 0.0 196 0.2 1.0 338 0.46 56 46 80 6.1 680 | | | | | | | υ | YPRESS CR | EEK AT S | TATE HIGH | WAY 326 | NEAR KO | MINTZE | | | | | | | | | | | | Field estimate. | ir. 18, 1959 | | 7.8 | 16 | 4.4 | | 106 | 14 | 0.0 | _ | 0.5 | Н | Ц | 338 | H | | 58 | 95 | 80 | 6.1 | 680 | 6.2 | ### TRINITY RIVER BASIN ### 625. TRINITY RIVER NEAR ROSSER, TEX. LOCATION.--At gaging station at bridge on State Highway 34, 2.5 miles south of Rosser, Kaufman County, and 8.5 miles downstream from East Fork Trinity River. DRAINAGE AREA.--8,162 square miles. RECORDS AVAILABLE.--Chemical analyses: October 1954 to September 1959. Nater temperatures: October 1954 to September 1959. EXTREMES, 1958-59,--Dissolved solids: Maximum, 745 ppm Dec. 21-31; minimum, 174 ppm Apr. 19. Hardness: Maximum, 197 ppm Feb. 26-28, Mar. 1-5; minimum, 104 ppm Apr. 19. Specific conductance: Maximum daily, 1,280 micromhos Dec. 30; minimum daily, 266 micromhos May 3. Mater temperatures: Maximum, 87°F July 9, 11; minimum, 34°F Dec. 23, Jan. 3. EXTREMES, 1954-59,--Dissolved solids: Maximum, 1,800 ppm Aug. 21-31, 1956; minimum, 139 ppm Nov. -6, 1957. Hardness: Maximum, 310 ppm Oct. 11-20, 1956; minimum, 88 ppm Nov. 5-6, 1957. Hardness: Maximum, 310 ppm Oct. 11-20, 1956; minimum, 88 ppm Nov. 5-6, 1957. Water temperatures: Maximum, 97°F July 1, 1955; minimum, 34°F Jan. 20, 1956, Dec. 23, 1958, Jan. 3, 1959. REMARKS.--Records of specific
conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | solved sol | | Hard
as Co | | Per- | So-
dium | Specific conduct- | | |---|--|---|--------------|--|--|-------------------------------|----------------------|--|--|---|-------------|--|------------|--|---|--|--|--|--|---|--|---| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
. so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25°C) | pH | | Oct. 1-9, 11 1958 Oct. 10, 12-20 Oct. 21-31 Nov. 1-10 Nov. 11-20 Nov. 21-30 | 920
720
704
282
347
361 | 10
13
11
14
14
15 | | 52
54
56
63
59
63 | 3.9
4.8
4.8
5.5
5.5 | 8 | 0 | 166
184
188
195
187
204 | 60
88
105
140
149
147 | 36
54
49
85
91
87 | | 12
23
24
43
47
42 | | 320
426
432
585
a598
a596 | 0.44
.58
.59
.80
.81 | 795
828
821
445
560
581 | 146
154
159
180
170
180 | 10
3
5
20
16
12 | 44
54
55
61
64
62 | 1.9
2.9
3.1
4.2
4.7
4.4 | 512
676
691
926
960
958 | 7.9
7.6
7.5
7.8
7.6
7.1 | | Dec. 1-10 | 432
294
284
360
312
299 | 11
13
14
14
14
14 | | 66
68
66
66
62
62 | 5.5
5.9
6.6
6.0
5.5
6.1 | 10
14
19
130
13 | 8
0
14 | 191
238
288
180
202
235 | 114
144
178
167
167 | 73
93
105
90
98
104 | 0.9 | 39
49
43
53
55 | | 537
a638
a745
667
695
a726 | .73
.87
1.01
.91
.95 | 626
506
571
648
585
586 | 187
194
192
189
177
180 | 30
0
0
42
12
0 | 54
62
68
58
66
69 | 3.3
4.6
6.0
4.1
5.2
5.9 | 849
1,050
1,180
1,050
1,100
1,160 | 7.0
7.0
7.2
7.0
6.8
7.0 | | Feb. 1-13 | 327
5,260
1,192
493
1,513
537
433 | 14
12
8.8
13
8.8
11 | | 64
47
66
70
54
62
64 | 6.0
2.6
4.4
5.5
3.8
5.4
5.1 | 10 | 13
i6 | 188
5136
175
190
140
172
186 | 161
36
93
130
64
90
116 | 108
14
36
73
32
52
70 | | 53
11
15
33
14
20
26 | | 670
a213
375
559
312
412
516 | .91
.29
.51
.76
.42
.56 | 592
3,030
1,210
744
1,270
597
603 | 184
128
182
197
150
176
180 | 30
16
3 9
42
36
36
36
28 | 64
28
40
53
37
46
54 | 4.9
.9
1.8
3.2
1.4
2.2
3.2 | 1,060
351
607
873
487
659
824 | 7.4
8.5
7.7
8.0
7.4
7.4
6.9 | | Apr. 1-10 | 382
433
6,510
1,278
460
4,682
779
452 | 13
12
10
8.2
13
10
11 | | 64
63
40
63
56
43
60
60 | 5.6
5.7
1.1
4.9
5.6
3.5
5.0
6.0 | 10 | .8
52
04
25 | 189
187
110
168
185
120
167
187 | 138
122
34
95
108
50
99
128 | 77
76
8.0
43
74
14
48
79 | .8 | 39
30
9.1
18
26
7.9
15
20 | | 576
544
a174
412
508
a212
412
542 | .78
.74
.24
.56
.69
.29
.56 | 594
636
3,060
1,420
631
2,680
867
661 | 182
180
104
177
162
122
170
174 | 28
28
14
40
11
23
33
21 | 55
56
28
43
58
31
47
58 | 3.5
3.4
.8
2.0
3.6
1.0
2.3
3.6 | 880
833
287
635
804
367
657
871 | 7.8
7.5
8.0
7.6
7.7
7.9
7.7 | | June 1-5 | 870
2,083
449
2,881
386
332
995 | 16
13
15
11
12
20
12 | | 62
49
60
53
55
57
50 | 6.2
3.8
5.2
4.2
5.5
6.5
3.8 | 11
4
8 | 3
.4
.9
32 | 149
145
188
146
168
200
156 | 166
67
122
82
90
137
58 | 100
37
82
31
64
105
37 | | 29
15
27
9.4
21
23
9.0 | | a581
a309
a517
341
440
624
306 | .79
.42
.70
.46
.60
.85 | 1,360
1,740
627
2,650
459
559
822 | 180
138
171
150
160
168
140 | 58
19
17
30
22
4 | 61
45
59
42
53
64
43 | 4.2
1.9
3.8
1.7
2.8
4.7
1.8 | 988
508
847
516
688
980
499 | 7.5
7.8
7.4
7.3
7.2
7.0
6.7 | | Aug. 1-2, 13 | 466
472
361
250
294
192
262 | 14
12
12
16
19
18 | | 51
52
49
49
48
42
35 | 3.8
4.3
4.6
5.3
5.1
6.0
5.8 | | 57
51
58 | 167
168
167
187
181
189
202 | 78
91
107
150
162
126
136 | 50
55
70
109
104
108
125 | | 12
15
21
28
34
44
43 | | a363
402
457
613
660
621
695 | .49
.55
.62
.83
.90
.84 | 457
512
445
414
524
322
492 | 142
147
142
144
141
130
112 | 6
10
4
0
0
0 | 52
54
61
70
71
73
78 | 2.6
2.9
3.7
5.7
5.9
6.0
7.7 | 597
638
734
1,010
1,030
986
1,120 | 7.4
7.3
6.9
6.6
7.5
7.2
6.8 | | Weighted Average | 664 | 12 | | 56 | 4.6 | 8 | 30 | 168 | 97 | 54 | | 22 | | 425 | 0.58 | 762 | 158 | 21 | 52 | 2.8 | 678 | | a Calculated from determined constituents. b Includes equivalent of 5 parts per million of carbonate (CO3). ### TRINITY RIVER BASIN--Continued ### 646. RICHLAND CREEK NEAR FAIRFIELD, TEX. LOCATION. -- At bridge on State Farm Highway 488, 4 miles upstream from mouth, 4 miles downstream from Chambers Creek and 16 miles north of Fairfield, Freestone County. RECORDS AVAILABLE . -- Chemical analyses: April 1956 to September 1959. Water temperatures: April 1956 to September 1959. Water temperatures: April 1956 to September 1959. EXTREMES, 1958-59, --Dissolved solids: Maximum, 4,260 ppm Feb. 4; minimum, 140 ppm June 24-27. Hardness: Maximum, 300 ppm Feb. 4; minimum, 94 ppm June 24-27. Specific conductance: Maximum daily, 10,100 micromhos Sept. 25; minimum daily, 217 micromhos June 25. Water temperatures: Maximum, 91 °F Aug. 3, 6; minimum, freezing point Jan. 3-4. EXTREMES, 1956-59, --Dissolved solids: Maximum, 13,500 ppm Aug. 11-31, 1956; minimum, 131 ppm Apr. 21-30, 1957. Hardness: Maximum, 460 ppm Oct. 18, 1956; minimum, 79 ppm Nov. 5-8, 1956. Specific conductance: Maximum daily, 22,000 micromhos Aug. 22, 1956; minimum daily, 157 micromhos Apr. 25, 1957. Water temperatures: Maximum, 98°F Aug. 3, 1957; minimum, freezing point Jan. 3-4, 1959. REMARKS,--Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined contributes unless otherwise noted as paced for dissolved solids concentrations of daily samples available in district office at Austin. Tex. No discharge records available for this constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available for this | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dia | solved sol | ids | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |---|-------------------------|--|---|--|--|--|--|--|---|--|--|---|------------|---|---|--------------------
--|---|--|---|--|---| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO.) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25' C) | pН | | Oct. 1-4, 11, 1958 Oct. 5-10 Oct. 12-22 Oct. 23-27 Oct. 28-31 Nov. 1-4, 8-9, 18-20 Nov. 5-7 Nov. 10-17 Nov. 21-25 | | 13
12
10
10
12
9.6
8.4
5.8 | 0.01
.02
.02
.09
.03
.01
.03
.02 | 76
68
77
52
76
92
76
93
89 | 5.2
4.4
6.3
3.3
5.0
6.7
5.9
10
7.6 | 21
11
38
5
19
27
8
69
47 | 4
3
5
0
5
5
9 | 225
175
246
131
208
250
192
310
250 | 48
56
50
59
57
84
91
61
85 | 315
162
560
63
275
395
101
1,040
700 | 0.4 | 8.0
5.5
7.5
3.8
5.0
6.5
5.1
9.0
4.2 | | 804
524
1,220
322
749
a1,000
482
2,070
1,500 | 1.09
.71
1.66
.44
1.02
1.36
.66
2.82
2.04 | | 211
188
218
143
210
257
214
273
254 | 26
44
16
36
40
52
56
19
48 | 69
57
79
45
66
70
46
85
80 | 6.6
3.6
11
2.0
5.7
7.5
2.5
18 | 1,440
924
2,220
540
1,330
1,800
798
3,730
2,650 | 8.2
8.2
8.0
7.9
7.9
8.0
8.0
8.2 | | Dec. 7 | | 13
6.4
6.2
5.2
4.6
3.8
6.4 | .03
.01
.01
.01
.01 | 75
95
97
100
88
95
85 | 4.2
7.5
7.6
7.7
6.0
9.1
8.4 | 10
52
53
389
21
55
14 | 0
1
5.1
5 | 180
297
296
277
248
292
189 | 85
72
73
98
82
89
121 | 140
760
780
580
295
810
195 | .5
.6
.6
.4 | 6.5
9.0
9.6
6.9
6.1
8.0
6.0 | | b521
1,620
1,650
1,330
856
1,710
674 | .71
2.20
2.24
1.81
1.16
2.33
.92 | | 204
268
274
281
244
274
246 | 57
24
31
54
41
36
92 | 54
81
81
75
66
81
56 | 3.3
14
14
10
6.0
15
4.0 | 929
2,900
2,980
2,360
1,490
3,100
1,170 | 8.2
8.2
8.2
8.2
8.2
8.2
7.9 | | Feb. 1-3 | | 8.8
5.6
12
12
9.6
12
10
7.0
9.0
3.8 | .00 | 90

78
88
54
96
96
86
92
89
42
82 | 6.4
8.1
4.0
6.5
6.6
9.9
6.7
7.0
3.2
7.6 | 72
14
33
3
11
17
59
14
25
5 | 7
2
6
4
4
4
5
5
2
2 | c 298
d 384
210
252
140
244
251
e 276
f 216
g 242
110
h 229 | 88

89
108
58
79
78
68
98
75
46 | 1,060
2,350
190
460
32
158
248
880
198
365
67
502 | .5
.5
.5
.7
.6
.7
.3
.2
.3 | 7.0

7.3
6.0
8.5
8.8
9.2
8.5
7.7
8.2
3.5
6.0 | | 2,130
4,260
654
1,130
288
626
772
1,800
b661
b922
b279
1,130 | 2.90
5.79
.89
1.54
.39
.85
1.05
2.45
.90
1.25
.38
1.54 | | 266
300
221
253
151
266
266
255
257
251
118
236 | 21
0
49
46
36
66
61
28
80
52
28
48 | 86

59
74
34
48
59
84
55
69
50
76 | 19

4.3
9.0
1.3
3.0
4.7
16
3.9
6.9
2.2
9.7 | 3,830
7,480
1,110
2,030
455
1,040
1,330
3,240
1,190
1,710
499
2,120 | 8.5
8.6
8.0
7.7
8.2
8.1
8.6
8.6
8.7
8.2
8.5 | | Apr. 1-2 | | 10
9.6
10
11
13
11 | .01
.01
.03
 | 49
72
58
48
61
88
62 | 3.0
5.5
4.0
3.4
3.6
6.2
4.5 | 3
3
12 | 9
0
4 | 276
133
185
147
129
159
238
170 | 54
91
58
47
57
75 | 772
83
262
88
28
33
165
102 | .6
.6
.5
.5
.4 | 4.9
3.0
5.0
5.7
3.8
6.3
4.8 | | 5341
769
392
254
296
618
416 | .46
1.05
.53
.35
.40
.84 | | 252
135
202
161
134
167
245 | 26
26
50
40
28
37
50
34 | 51
67
48
33
31
52
49 | 2.5
5.9
2.4
1.1
1.1
3.4
2.6 | 2,930
611
1,320
650
400
477
1,070 | 7.9
7.6
8.0
7.7
7.5
8.0
7.7
7.8 | | May 4, 10-11, 12 at
6:48 am, 13-15
May 8 | | 10 | .07 | 39

70 | 2.3 | - | 7 | 112
206
209
183 | 27

60 | 14
230
458
51 | .4 | 3.0

5.2 | | 181

356 | .25

.48 | | 107
214
232
194 | 15
45
60
44 | 25

33 | .7

1.4 | 285
1,260
2,000
570 | 7.4
7.9
7.9
7.7 | a Residue on evaporation at $180\,^{\circ}\text{C}$. b Calculated from determined constituents. o Casturateu from determined constituents. Includes equivalent of 12 parts per million of carbonate (CO₃). d Includes equivalent of 27 parts per million of carbonate (CO₃). Includes equivalent of 13 parts per million of carbonate (CO₃). f Includes equivalent of 10 parts per million of carbonate (CO₃). Includes equivalent of 14 parts per million of carbonate (CO₃). h Includes equivalent of 8 parts per million of carbonate (CO₃). TRINITY RIVER BASIN--Continued 646. RICHLAND CREEK NEAR FAIRFIELD, TEX. -- Continued Chemical analyses, in parts per million, water year October 1958 to September 1959--Continued | | Mean | g | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | Hard
as C | iness
cCO ₁ | Per- | So-
dium | Specific
conduct- | | |--------------------------|-------------------------|-------------------------------|------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|-------------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25 C) | ρН | | June 1, 3-4, 14-20, 1959 | | 14 | 0.01 | 86 | 6.1 | 11 | 4 | 222 | 76 | 155 | 0.5 | 6.6 | | 598 | 0.81 | | 240 | 58 | 51 | 3.2 | 1,000 | 7.9 | | June 5. 11-13 | | 14 | .02 | 64 | 3.9 | 4 | | 170 | 59 | 52 | .5 | 4.8 | | 346 | .47 | | 176 | 36 | 37 | 1.6 | 558 | 7.5 | | June 6-10 | | 1.3 | .03 | 45 | 2.6 | 1 | 9 | 129 | 35 | 13 | .5 | 3.0 | | 208 | .28 | | 123 | 1.7 | 2.5 | . 7 | 325 | 7.3 | | June 21 | | | | | | - | - | 179 | | 235 | | | | | | | 204 | 58 | | | 1,260 | 7.B | | June 22-23, 28-30 | | 14 | .03 | 48 | 3.0 | 3 | 0 | 133 | 42 | 30 | .5 | 2.5 | | 250 | .34 | | 1.32 | 23 | 33 | 1.2 | 401 | 7.6 | | June 24-27 | | 11 | .09 | 34 | 2.1 | 1 | 2 | 102 | 21 | 8.0 | .5 | 1.5 | | b140 | .19 | | 94 | 10 | 22 | . 5 | 239 | 7.5 | | July 1-4 | | 12 | .04 | 66 | 5.1 | 5 | 2 | 164 | 49 | 77 | .4 | 3.2 | | 376 | .51 | | 186 | 51 | 38 | 1.6 | 633 | 6.5 | | July 5, 7-9, 11-15 | | 14 | .02 | 80 | 7.3 | 16 | 8 | 201 | 76 | 245 | .5 | 5.0 | | 751 | 1.02 | | 230 | 65 | 61 | 4.8 | 1,300 | 7.0 | | July 16-20 | | 9.8 | | 74 | 8.2 | 28 | 8 | 196 | 78 | 425 | .4 | 4.2 | | b984 | 1.34 | | 218 | 58 | 74 | 8.5 | 1,790 | 7.3 | | July 21 | | 15 | | 39 | 2.2 | 5 | | 136 | 49 | 47 | .7 | 4.5 | | b283 | .38 | | 106 | 0 | 55 | 2.5 | 459 | 8.0 | | July 22-31, Aug. 1-2 | | 13 | | 64 | 4.4 | 12 | 8 | 156 | 83 | 168 | .6 | 3.0 | | 550 | .75 | | 178 | 50 | 61 | 4.2 | 935 | 7.5 | | Aug. 3-6 | | 13 | | 65 | 6.1 | 26 | | 184 | 72 | 372 | .6 | 1.8 | | 894 | 1.22 | | 187 | 36 | 75 | 8.3 | 1,600 | 8.0 | | Aug. 7, 9-15 | | 1.0 | | 70 | 7.9 | 53 | | 196 | 74 | 800 | .7 | .5 | | 1,590 | 2.16 | | 207 | 46 | 85 | 16 | 2,880 | 7.8 | | Aug. 16-28, 30-31 | | 8.0 | | 86 | 10 | 81 | | 274 | 70 | 1,220 | .7 | .5 | | 2,340 | 3.18 | | 256 | 31 | 87 | 22 | 4,180 | 7.9 | | Sept. 1-5, 17-23, 25-26- | | 7.8 | .02 | 88 | 16 | 1,36 | | 323 | 77 | 2,050 | .8 | | | 3,760 | 5.11 | | 286 | 21 | 91 | 35 | 6,600 | 7.7 | | Sept. 7-16, 28-29 | | 7.8 | .00 | 72 | 11 | 77 | 7 | 271 | 78 | 1,140 | .6 | 1.5 | | 2,220 | 3.05 | | 224 | 2 | 88 | 23 | 3,970 | 8.1 | | Sept. 30 | | | | | | - | - | 159 | | 465 | | | | | | | 122 | 0 | | | 1,790 | 8.0 | b Calculated from determined constituents. + ### TRINITY RIVER BASIN -- Continued ### 665. TRINITY RIVER AT ROMAYOR, TEX. LOCATION. -- At gaging station at bridge on State Highway 105, 1.9 miles south of Romayor, Liberty County, 2.0 miles downstream from Gulf, Colorado and Santa Fe Railway bridge and at mile 94. DRAINAGE AREA .-- 17,192 square miles . RECORDS AVAILABLE .- - Chemical analyses: October 1945 to November 1949, February 1950 to
September 1951, April 1953 to September 1959. Water temperatures: February 1950 to September 1951, April 1953 to January 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 666 ppm Sept. 7-8, 10-16; minimum, 132 ppm Apr. 12-22. Hardness: Maximum, 187 ppm Sept. 7-8, 10-16; minimum, 66 ppm Apr. 12-22. Hardness: Maximum, 187 ppm Sept. 7-8, 10-10; minimum, 06 ppm mpc. 12-22. Specific conductance: Maximum daily, 1,520 micromhos Sept. 15; minimum daily, 194 micromhos Apr. 13. EXTREMES, 1945-50, 1953-59, --Dissolved solids: Maximum, 1,900 ppm Nov. 7, 1953; minimum, 82 ppm July 31, 1954. Hardness: Maximum, 258 ppm Oct. 21-31, 1956; minimum, 32 ppm Nov. 1-3, 1955. Specific conductance: Maximum daily, 3,800 micromhos Oct. 30, 1956; minimum daily, 103 micromhos Nov. 9, 1946. Water temperatures (1953-58): Maximum, 98°F July 18, 27, 1953; minimum, 38°F Jan. 18, 1956. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | | | | | Ch | emical a | nalyses, | in parts | per mill | ion, wate | r year | October | 1958 to | o Septembe | r 1959 | | | | | | | | |---------------------|----------------|-------------------------------|------|------|-------------|----------|-------------|---------------------|----------|-----------|--------|--------------------|---------|---------------------|----------------------|--------------------|-------------------------|------------------------|------|-----------------|-------------------|-----| | | | | | | | | | | | | | | | | solved soli | ds | Har | iness | T | | Specific | | | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | N 00000 | due at 18 | | as C | aCO ₃ | Per- | So- | conduct- | | | Date of collection | dis-
charge | Silica
(SiO ₁) | Iron | cium | ne-
sium | dium | tas- | bonate | fate | ride | ride | trate | ron | Parts | Tons | | Cal- | | cent | dium
adsorp- | ance | pH | | | (cfs) | (3101) | (Fe) | (Ca) | (Mg) | (Na) | sium
(K) | (HCO ₃) | (50,) | (CI) | (F) | (NO ₃) | (B) | per
mil-
lion | per
acre-
foot | Tons
per
day | cium,
magne-
sium | Non-
carbon-
ate | dium | tion
ratio | mhos at
25° C) | | | Oct. 1-10, 1958 | 4,813 | 1.5 | | 44 | 4.0 | | 37 | 124 | 40 | 43 | | 3.5 | | 264 | 0.36 | 3,430 | 126 | 25 | 39 | 1.4 | 434 | 8.0 | | Oct. 11-20 | 1,691 | 16 | | 56 | 5.2 | | 73 | 154 | 50 | 98 | | 5.5 | | 397 | .54 | 1,810 | 161 | 35 | 50 | 2.5 | 681 | 7.9 | | Oct . 21-31 | | 14 | | 59 | 5.3 | | 84 | 165 | 62 | 104 | | 7.5 | | 434 | . 59 | 1,660 | 169 | 34 | 52 | 2.8 | 742 | 7.8 | | Nov. 1-10 | 961 | 14 | | 53 | 5.0 | | 75 | 148 | 50 | 97 | | 7.0 | | 392 | . 53 | 1,020 | 152 | 31 | 52 | 2.6 | 675 | 7.7 | | Nov. 11-20 | 754 | 15 | | 58 | 5.5 | | 75 | 156 | 58 | 98 | | 3.5 | | 407
506 | .55 | 829 | 167 | 39 | 49 | 2.5 | 691 | 7.8 | | Nov. 21-30 | 1,072 | 11 | | 55 | 6.3 | | 116 | 145 | 63 | 161 | | 3.5 | | 306 | .69 | 1,460 | 163 | 44 | 61 | 3.9 | 891 | 7 8 | | Dec. 1-14 | 1,321 | 16 | | 51 | 6.9 | | 135 | 143 | 73 | 178 | | 7.2 | | 555 | .75 | 1,980 | 156 | 38 | 65 | 4.7 | 964 | 7.5 | | Dec. 15-31 | 860 | 16 | | 55 | 6.8 | | 115 | 146 | 73 | 151 | | 8.5 | | 506 | .69 | 1,170 | 165 | 46 | 60 | 3.9 | 883 | 7.8 | | Jan. 1-15, 1959 | 1,073 | 16 | | 53 | 7.3 | 125 | 6.3 | 140 | 75 | 177 | 0.3 | 8.5 | | 555 | .75 | 1,610 | 162 | 48 | 62 | 4.3 | 958 | 7.5 | | Jan. 16-31 | 824 | 13 | | 56 | 8.0 | | 144 | 150 | 89 | 185 | | 10 | | 595 | .81 | 1,320 | 172 | 50 | 64 | 4.8 | 1,040 | 7.8 | | Feb. 1-6 | 2,469 | 15 | | 36 | 3.4 | | 65 | 89 | 41 | 88 | | 6.2 | | a299 | .41 | 1,990 | 104 | 31 | 57 | 2.8 | 534 | 8.0 | | Feb. 7-15, 19-20 | 4,450 | 17 | | 46 | 6.6 | | 115 | 115 | 70 | 155 | | 8.2 | | 511 | .69 | 6,140 | 142 | 48 | 64 | 4.2 | 851 | 7.9 | | Feb. 16-18 | 17,300 | 12 | 1 | 24 | 2.3 | | 34 | 60 | 31 | 41 | | 4.1 | | a178 | .24 | 8,310 | 70 | 20 | 51 | 1.8 | 313 | 7.7 | | Feb. 21-28 | 9,192 | 14 | | 39 | 3.9 | 1 | 35 | 110 | 44 | 35 | | 5.3 | | a230 | .31 | 5,710 | 114 | 24 | 40 | 1.4 | 395 | 7.8 | | Mar. 1-8 | 2,382 | 16 | | 46 | 5.5 | | 58 | 122 | 56 | 72 | | 4.8 | | 344 | .47 | 2,210 | 138 | 38 | 48 | 2.2 | 555 | 7.7 | | Mar. 9-20 | 3,354 | 14 | | 49 | 6.5 | | 91 | 129 | 70 | 114 | | 8.4 | | 438 | .60 | 3,970 | 149 | 44 | 57 | 3.2 | 735 | 7.7 | | Mar. 21-31 | 1,673 | 13 | | 51 | 5.7 | | 62 | 137 | 58 | 77 | | 5.5 | | 366 | .50 | 1,650 | 150 | 38 | 47 | 2.2 | 593 | 7.8 | | Apr. 1-9 | 1,814 | 16 | | 59 | 8.0 | 101 | 5.1 | 147 | 73 | 140 | .4 | 4.8 | | 516 | .70 | 2,530 | 180 | 60 | 54 | 3.3 | 856 | 7.8 | | Apr. 10-11 | 10,530 | 20 | | 29 | 4.1 | | 43 | 82 | 37 | 53 | | 3.8 | | a230 | .31 | 6,540 | 90 | 22 | 51 | 2.0 | 393 | 7.8 | | Apr. 12-22 | 23,990 | 12 | | 22 | 2.8 | | 19 | 64 | 20 | 23 | | 2.0 | | a132 | .18 | 8,550 | 66 | 14 | 38 | 1.0 | 235 | 7.3 | | Apr. 23-30 | 13,800 | 14 | 1 | 38 | 3.8 | | 26 | 110 | 35 | 27 | | 3.7 | | a202 | .27 | 7,530 | 110 | 20 | 34 | 1.1 | 355 | 7.6 | | May 1-7, 13-15 | 7,442 | 14 | | 48 | 5.1 | | 49 | 128 | 48 | 64 | | 2.5 | | a294 | .40 | 5,910 | 141 | 36 | 43 | 1.8 | 521 | 7.6 | | May 8-12, 16-20 | 16,980 | 9.8 | | 32 | 3.0 | | 18 | 96 | 20 | 22 | | 2.5 | | a154 | .21 | 7,060 | 92 | 14 | 30 | .8 | 284 | 7.5 | | May 21-31 | 21,250 | 11 | | 34 | 3.4 | | 19 | 94 | 27 | 24 | | 1.5 | | a166 | .23 | 9,520 | 99 | 22 | 29 | .8 | 296 | 7.4 | | June 1-10 | 5,083 | 22 | | 43 | 5.1 | | 44 | 118 | 46 | 54 | | 3.5 | | 286 | . 39 | 3,930 | 128 | 32 | 43 | 1.7 | 461 | 7.2 | | June 11-17, 29-30 | 10,700 | 16 | | 42 | 3.8 | | 26 | 125 | 35 | 25 | | 4.5 | | 230 | .31 | 6,640 | 120 | 18 | 32 | 1.0 | 359 | 7.2 | | June 18-28 | 3,505 | 21 | | 48 | 5.0 | | 52 | 143 | 41 | 65 | 1 | 2.8 | f | 308 | .42 | 2,910 | 140 | 24 | 45 | 1.9 | 512 | 7.4 | | July 1-9 | | 22 | 1 | 42 | 3.8 | 1 | 26 | 128 | 35 | 24 | | 1.5 | | 226 | .31 | 8,340 | 120 | 16 | 32 | 1.0 | 350 | 7.8 | | July 10-25 | 1,502 | 19 | | 58 | 5.8 | | 66 | 166 | 46 | 88 | | 3.5 | | 372 | .51 | 1,510 | 168 | 32 | 46 | 2.2 | 626 | 6.8 | | July 26-31 | 9,658 | 13 | | 28 | 3.0 | | 52 | 83 | 35 | 63 | | 3.0 | | a238 | .32 | 6,210 | 82 | 14 | 58 | 2.5 | 414 | 7.3 | | Aug. 1-5, 9-16 | 2,202 | 17 | | 40 | 4.2 | | 56 | 116 | 40 | 71 | 1 | 2.2 | | 308 | .42 | 1,830 | 118 | 22 | 51 | 2.2 | 501 | 7.3 | | Aug. 6-8, 17-20, 22 | | . 17 | | 50 | 5.6 | | 71 | 140 | 45 | 99; | 1 | 2.2 | | 382 | . 52 | 1,460 | 148 | 34 | 51 | 2.5 | 639 | 7.5 | | Aug. 21, 23-25 | 948 | 20 | 1 | 57 | 6.0 | | 112 | 171 | 46 | 157-7- | | .8 | 1 | a483 | .66 | 1,240 | 166 | 26 | 59 | 3.8 | 832 | 7.9 | | Aug. 26-31 | | 13 | 1 | 43 | 4.5 | | 73 | 133 | 53 | 86 ** | 1 | .2 | | 357 | .49 | 1,490 | 126 | 17 | 56 | 2.8 | 579 | 7.8 | | Sept. 1-6, 9 | 939 | 19 | | 51 | 6.2 | | 93 | 162 | 57 | 114 | 1 | 1.8 | | 435 | .59 | 1,100 | 152 | 20 | 57 | 3.3 | 741 | 7.6 | | Sept. 7-8, 10-16 | 752 | 11 | | 62 | 7.9 | | 171 | 187 | 75 | 232 | 3 | 1.8 | | 666 | .91 | 1,350 | 187 | 34 | 67_ | 5.4 | 1,180 | 7.6 | | Sept. 17-30 | 516 | 13 | | 60 | 7.4 | | 157 | 205 | 63 | 203 | | 1.5 | | 614 | .84 | 855 | 180 | 12 | 65 | 5.1 | 1,100 | 7.6 | | Weighted average | 4,909 | 14 | 1 | 38 | 4.1 | | 42 | 107 | 37 | 54 | | 3.4 | | 249 | 0.34 | 3,300 | 112 | 24 | 45 | 1.7 | 425 | | a Calculated from determined constituents. ### TRINITY RIVER BASIN -- Continued 671. TRINITY RIVER NEAR MOSS BLUFF, TEX. LOCATION . -- At Devers Pumping Plant Number One, one mile west of Moss Bluff, Liberty County. RECORDS AVAILABLE .-- Chemical analyses: Short periods during summers of 1946 to 1949, daily records October 1949 to September 1959. EXTREMES, 1958-59. -- Dissolved solids: Maximum, 693 ppm Dec. 5-8; minimum, 143 ppm Apr. 12-20. Hardness: Maximum, 194 ppm Sept. 17-24, 27-30; minimum, 69 ppm Apr. 12-20. Specific conductance: Maximum daily, 1,270 micromhos Dec. 6; minimum daily, 235 micromhos Apr. 18. EXTREMES, 1949-59.-Dissolved solids: Maximum, 3,930 ppm Aug. 26-31, 1956; minimum, 110 ppm Oct. 4-10, 1949. Hardness: Maximum, 790 ppm Aug. 26-31, 1956; minimum, 40 ppm Apr. 9-13, 1955. Specific conductance: Maximum daily, 7,630 micromhos Aug. 27, 1952; minimum daily, 127 micromhos Oct. 7, 1949. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tax. No discharge records available for this station. Chemical analyses, in parts per million, water year October 1958 to September 1959 Hardness Dissolved solids Specific as CaCO, Mean Mag-Cal-So-Bicar-Chlo-(residue at 180°C) Perconduct-Fluo-Ni-Bodium dis-Silica Iron tascent ance Date of collection cium pH dium Caladsorpbonate fate ride ride trate ron Parts Tons charge (SiO,) (Fe) sium Tons Non-(micro-(Ca) (Na) (HCO₃) (SO,) (CI) (F) (NO₃) (B) tion cium, (cfs) (Mg) (K) carbon. dium mhos at milacremagneratio day ate 25° C) lion foot sium Oct. 1-8, 27-28, 1958---114 218 0.30 108 356 Oct. 9-16-----12 48 46 4.2 139 35 60 3.0 292 .40 137 23 490 Oct. 17-26, 29-31----5.3 79 169 48 104 4.0 408 .55 166 28 2.7 699 7.9 Nov. 1-15-----83 48 5.1 164 111 5.5 420 .57 166 31 725 Nov. 16-30-----12 89 164 55 121 2.5 433 .59 172 37 53 2.9 769 7.6 17 Dec. 2-4, 9-15----73 155 8.0 74 161 Dec. 5-8-----17 173 172 62 252 693 94 185 5.5 1,210 7.0 Dec. 19-31-----16 59 67 110 514 .70 176 44 3.6 890 Jan. 1-14, 1959-----14 60 9.0 133 75 0.5 159 4.0 611 .83 56 186 4.2 1,030 7.8 Jan. 15-28-----12 60 7.9 149 164 75 204 6.6 .88 182 48 64 4.8 1,090 7.6 Jan. 29-31, Feb. 1----12 45 5.0 88 111 47 127 403 5.6 .55 42 59 133 3.3 8.1 Feb. 2-8-----9.4 27 27 2.6 60 a208 .28 20 2.2 384 7 6 Feb. 9-12. 16-----43 12 4.7 76 104 54 105 5.2 374 .51 127 2.9 632 7.4 Feb. 13-15, 17-28----42 12 3.2 35 115 35 4.8 a233 .32 118 24 1.4 402 7.6 Mar. 1-8-----43 4.9 49 41 16 116 66 4.0 304 .41 127 32 1.9 486 7.9 Mar. 10-14, 20-24----16 52 6.8 85 130 70 112 6.9 435 .59 158 51 3.0 728 Mar. 15-19, 26-31-----50 50 42 4.9 141 65 4.8 313 .43 145 30 43 1.8 524 14 6.1 78 146 61 112 5.1 4.2 430 . 58 164 45 Apr. 12-20-----9.0 2.2 67 20 1.8 a143 .19 69
14 1.2 255 7.0 Apr. 21-30-----3.2 101 33 35 2.8 a201 .27 103 20 39 1.3 347 May 1-5----40 33 32 a222 .30 2.5 26 37 1.3 400 May 6-8-----13 60 6.2 150 3.6 .50 a365 52 175 43 2.0 655 7.4 May 9-20-----32 3.3 28 22 2.0 a180 .24 93 15 39 1.3 333 7.2 May 21-31-----10 36 3.2 23 101 26 29 2.0 al 79 .24 103 20 1.0 327 June 1-2, 4-12, 14----15 35 236 .32 114 13 39 1.4 390 June 13, 17-20-----16 5.2 53 157 43 3.0 332 .45 156 28 1.9 564 50 June 21-30-----14 4.5 60 142 43 78 .45 3.0 334 144 27 2.2 574 7.3 July 1-4, 6-----10 38 21 101 34 24 a182 .25 2.0 109 29 337 26 .9 6.2 July 7, 9-13-----18 56 5.0 44 152 47 2.8 330 160 36 37 1.5 532 6.7 July 15-24-----14 49 4.8 39 133 30 60 a264 142 33 37 1.4 488 6.5 July 25-30-----9.2 28 2.4 30 72 26 40 2.8 a173 .24 80 21 45 1.5 333 6.3 Aug. 1-10-----14 4.2 55 34 300 115 21 51 492 7.2 2.2 Aug. 11-20-----13 46 5.0 54 133 34 75 2.2 315 .43 136 26 2.0 521 7.3 Aug. 21-31-----13 44 4.5 57 134 34 74 2.2 320 .44 128 18 49 2.2 521 7.1 Sept. 1-10-----16 46 4.8 69 152 36 86 1.2 350 .48 134 10 53 2.6 595 6.5 59 Sept. 11-16-----50 13 6.4 106 185 142 .2 a468 .64 174 22 827 3.5 8.2 Sept. 17-24, 27-30----8.8 7.0 152 194 a605 .82 a Calculated from determined constituents. ### TRINITY RIVER BASIN--Continued ### 672. OLD RIVER NEAR COVE, TEX. LOCATION.--At Barber Hill Pumping Plant, 5 miles northwest of Cove, Chambers County. RECORDS AVAILABLE.--Chemical analyses: Short periods during summers of 1946 to 1949, daily records October 1949 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 585 ppm Jan. 15-28; minimum, 105 ppm Feb. 6, 15-16. Hardness: Maximum, 187 ppm Jan. 1-14; minimum, 50 ppm Feb. 6, 15-16. Specific conductance: Maximum daily, 1,480 micromhos Jan. 25; minimum daily, 128 micromhos Oct. 12. EXTREMES, 1949-59.--Dissolved solids: Maximum, 11,300 ppm Oct. 14-29, 1956; minimum, 77 ppm Apr. 29, May 1-2, 1957. Hardness: Maximum, 2,460 ppm Oct. 14-29, 1956; minimum, 34 ppm Apr. 29, May 1-2, 1957. Specific conductance: Maximum daily, 18,000 micromhos Oct. 15, 17, 1956; minimum daily, 10 micromhos Apr. 29, 1957. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available for this station. | | Mean | | 24.3 | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved so
due at 18 | | Hard
as Co | iness
rCO ₃ | Per- | So-
dium | Specific
conduct- | | |---|-------------------------|-------------------------------------|--------------|----------------------------------|--|---------------------------------------|---------------------|---------------------------------------|----------------------------------|--------------------------------------|----------------|---------------------------------|------------|--|---------------------------------|--------------------|---------------------------------------|----------------------------------|----------------------------------|--|--|--| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO;) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25°C) | pН | | Oct. 1-14, 1958
Oct. 15-31
Nov. 1-15
Nov. 16-30 | | 16
14
14
12 | | 24
27
31
35 | 3.0
3.3
4.0
4.7 | 1.7
2.5
3.0
3.6 | 5 | 87
91
105
118 | 9.8
21
15
17 | 20
27
40
49 | | 0.5
.5
.5 | | a133
173
a186
a212 | 0.18
.24
.25
.29 | | 72
81
94
107 | 1
6
8
10 | 34
40
41
42 | 0.9
1.2
1.3
1.5 | 224
263
327
380 | 7.5
7.3
7.4
7.5 | | Dec. 1-10 | | 13
13
13
9.4
4.2
6.6 | | 42
54
57
60
60
23 | 5.7
7.3
8.5
9.1
8.0
2.9 | 51
86
112
115
139
24 | 5.6 | 134
153
149
163
161
64 | 24
42
61
61
59
20 | 73
128
166
179
206
34 | 0.3 | .5
1.0
1.8
1.0
.1 | | 433
530
560
585
a142 | .37
.59
.72
.76
.80 | | 128
164
177
187
182
69 | 18
39
55
54
50
17 | 46
53
58
56
62
43 | 1.9
2.9
3.7
3.7
4.5 | 495
731
893
947
1,020
274 | 8.2
8.2
8.2
8.1
8.0
6.8 | | Feb. 1-5 | | 9.6
9.8
11
11
11 | | 34
17
26
25
34
45 | 5.1
1.8
3.3
2.9
4.5
5.8 | 61
17
29
26
38
57 | 7
9
5 | 100
61
98
99
124
138 | 35
11
15
10
15
34 | 84
17
32
27
48
79 | | 1.2
1.0
1.2
1.2
1.0 | | 306
a105
a166
a152
233
327 | .42
.14
.23
.21
.32 | | 106
50
78
74
103
136 | 24
0
0
0
2
24 | 56
42
45
43
44
48 | 2.6
1.0
1.4
1.3
1.6
2.1 | 514
187
299
275
384
549 | 7.2
7.2
7.1
7.2
7.4
7.5 | | Apr. 1-9 | | 11
11
12
13
10
12 | | 50
18
28
37
22
32 | 6.4
2.1
3.2
4.2
2.6
3.4 | 65 23
32
39
24
34 | !
) | 152
69
99
120
75
110 | 39
14
20
28
18
20 | 92
22
36
46
26
39 | .3

 | 1.2
1.2
1.2
1.2
1.2 | | 370
a125
a181
a227
a141
214 | .50
.17
.25
.31
.19 | | 152
54
83
110
66
94 | 27
0
2
11
4
4 | 47
48
46
43
44
44 | 2.3
1.4
1.6
1.6
1.3 | 616
218
321
402
252
345 | 7.8
7.2
7.6
7.5
7.2
7.2 | | June 1-14 | | 16
20
16
17 | | 36
45
42
43 | 4.5
5.7
5.1
5.1 | 31
58
39
41 | 3 | 122
130
133
143 | 25
50
36
30 | 35
71
44
48 | | 1.2
2.8
1.5 | | a209
a316
271
278 | .28
.43
.37
.38 | | 108
136
126
128 | 8
30
17
11 | 39
48
40
41 | 1.3
2.1
1.5
1.6 | 363
519
420
432 | 7.3
7.8
7.4
7.5 | | 26-28
July 29-31 | | 16
22 | | 36
26 | 4.2
3.5 | 35
22 | | 127
103 | 23
9.6 | 38
23 | | .8
.8 | | 238
a158 | .32 | | 107
79 | 3
0 | 41
38 | 1.5 | 361
250 | 7.4
7.6 | | Aug. 1-4, 6-10
Aug. 11-17, 19-26
Aug. 27-31, Sept. 1-4
Sept. 5-12
Sept. 14-30 | | 22
21
22
19
21 | | 34
45
26
40
53 | 5.0
5.9
4.0
5.3
6.6 | 35
58
28
50
75 | 3 | 135
142
99
140
165 | 14
30
12
19
37 | 40
82
34
68
105 |

 | .5
.8
1.0
.8 | | 226
330
a176
286
397 | .31
.45
.24
.39 | | 105
137
81
122
159 | 0
20
0
7
24 | 42
48
51
41
51 | 1.5
2.2
1.4
2.0
2.6 | 350
543
290
467
665 | 7.9
7.8
7.6
7.9
7.9 | a Calculated from determined constituents. ### TRINITY RIVER BASIN--Continued 673. TRINITY RIVER AT ANAHUAC, TEX. LOCATION.--At Lone Star Pumping Plant in Anahuac, Chambers County. RECORDS AVAILABLE.--Chemical analyses: Short periods during summers of 1946 to 1949, December 1949 to September 1959. EXTREMES, 1949-56.--Dissolved solids: Maximum, 18,400 ppm Aug. 1-13, 1956; minimum, 140 ppm Apr. 12-19, 1955. Hardness: Maximum, 3,550 ppm Oct. 21-31, 1952; minimum, 45 ppm Apr. 12-19, 1955. Specific conductance: Maximum daily, 33,700 micromhos Sept. 26, 1956; minimum daily, 199 micromhos Apr. 15, 1955. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. No discharge records available for this station. | | | | | | Che | mical ana | lyses, | in parts | per mill | ion, wate | er year | October | 1958 t | o Septembe | er 1959 | | | | | | | | |---|-------------------------|-------------------------------|--------------|----------------------|------------------------|--------------|-----------------------|--|-----------------------|--|-------------|-----------------------------|------------|----------------------------------|--------------------------------|--------------------|--|-------------------------------------|----------------------|-----------------------------|--|--| | | | | | | | | | | | | | | | Dia | solved soli | ds | Hard | | | So- | Specific | | | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | calculate | d) | ns Co | iCO, | Per- | dium | conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO _z) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 8, 1958 Oct. 16, 23, 29 Nov. 6, 13 Nov. 20, 25 | | 13
20
18 | | 56
64
59 | 5.2
11
6.5 | | | 109
163
167
157 | 51
71
56 | 59
115
235
150 | = | 3.5
7.0
2.0 | | 412
a674
a485 | 0.56
.92
.66 | | 113
161
204
174 | 24
28
68
45 | 54
63
57 | 3.0
4.8
3.4 |
433
725
1,160
840 | 8.0
8.1
8.2
8.1 | | Dec. 4, 11, 18 Dec. 26, 31 Jan. 8, 1959 Jan. 15 Jan. 21 Jan. 29 | | 15
15

 | | 58
62

 | 7.2
57

 | | | 150
153
160
161
152
168 | 78
165

 | 218
890
415
250
628
295 | :: | 6.0
7.0
 | | a639
1,810

 | .87
2.46

 | | 174
389
247
192
320
209 | 51
264
116
60
196
72 | 66
75

 | 5.2
12

 | 1,120
3,250
1,770
1,220
2,460
1,430 | 8.0
8.1
7.8
8.2
8.1
7.9 | | Feb. 5 | | 24 | |

50 | 6.2 | . : | -
-
-
-
- | 77
88
51
100
134 |

58 | 109
140
38
36
108 | 0.4 | 4.0 | | 398 |

.54 | | 95
116
64
108
150 | 32
44
22
26
40 |

54 | 2.9 | 562
709
282
365
689 | 7.7
7.6
7.2
7.6
7.4 | | Apr. 1, 3, 6, 8Apr. 10, 13, 15, 17, 20, 21, 26, 29 | | 9.8
14 | | 56
25
39 | 7.6
2.6
5.0 | | 5.3 | 147
69
108 | 58
21
38 | 1.48
36
55 | .3 | 3.5
2.0
3.2 | | 468
157
249 | .64
.21
.34 | | 171
73
118 | 50
17
29 | 56
44
43 | 3.4
1.3
1.7 | 829
282
447 | 8.2
7.8
7.7 | | May 12, 15, 18-19, 22, 25, 27-28 | | 9.6 | | 31 | 3.3 | 2 | :5 | 96 | 22 | 30 | | 2.0 | | 170 | .23 | | 91 | 12 | 38 | 1.1 | 315 | 7.4 | | June 1, 3, 8, 9, 12, 13, 15 | | 18 | | 38 | 4.3 | 2 | 1 | 107 | 38 | 51 | . 3 | 2.5 | | 246 | .33 | | 112 | 25 | 44 | 1.7 | 429 | 7.5 | | June 17, 19, 22, 24, 26, 29 | | 18 | | 45 | 4.6 | | 6 | 125 | 41 | 59 | .3 | 2.5 | | a294 | .40 | | 131 | 29 | 43 | 1.7 | 484 | 7.3 | | 14, 17
July 20, 21, 24
July 26, 29, 31 | | 18
22
12 | | 51
30 | 4.3
7.1
3.1 | 9 | 52
94
37 | 126
153
79 | 38
52
23 | 64
126
56 | .3
.3 | 2.0
2.0
.8 | | a300
429
201 | .41
.58
.27 | | 122
156
88 | 19
30
23 | 48
57
48 | 2.0
3.3
1.7 | 482
743
354 | 7.6
7.8
7.5 | | Aug. 3, 5 | | 17 | | 19 | 3.8 | 4 | 2 | 64 | 14 | 61 | .3 | 1.8 | | 190 | .26 | | 63 | LI | 57 | 2.3 | 320 | 7.8 | | 21, 24, 28, 31
Aug. 26 | | 16

22
24
25 | | 46
46
62
72 | 5.2
5.7
11
48 | 10 | 1 | 127
103
139
176
164
126 | 42
45
77
156 | 132
770
149
308
920
2,400 | | 2.5
.5
.2
.5 | | a412

a444
780
1,860 | .56

.60
1.06
2.53 | | 136
302
138
200
377
830 | 32
218
24
56
242
726 | 59
63
70
76 | 3.4

4.0
6.5
13 | 707
2,750
780
1,390
3,330
7,690 | 7.8
7.9
8.1
8.1
7.9 | a Residue on evaporation at 180°C. # TRINITY RIVER BASIN -- Continued # 674. TRINITY DAY AT MOUTH OF TRINITY RIVER NEAR ANAIDAC, TEX. LOCATION.—At four sampling stations in Trinity Bay opposite mouth of Trinity River near Anahuae, Chambers County. Station 2- In Anahuae Channel about 14 miles southwest of Station 2. Station 6- In Anahuae Channel at south end. Station 7- In Trinity Bay about 19 miles seation 6. In Trinity Bay about 19 miles east of Station 6. RECORDS AVAILABLE.—Chemical analyses: October 1950 to September 1959. Specific conductance, micromhos at 25°C, and chloride, in parts per million, water year October 1958 to September 1959 Station 2 Station 3 Station 5 Station 5 re | June 19 | June 9 | June 3June 8June 8 | May 19 | May 11 | May 4 | Apr. 20 | Apr. 10 | Apr. 3 | Mar. 12 | Feb. 12 | Jan. 8, 1959 | Dec. 4 | Nov. 13 | | Oct. 8, 1958 | |---------------------------------|----------------------------------|--------------------------|----------------------------------|--------------------------|--------------------------|--|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|---|------------------------------|------------------------------|-------------------------------| | 454
592
708
491
557 | 489
437
639
389
352 | 397
349
380
573 | 295
316
327
311
290 | 458
279
326
355 | 351
411
455
446 | 281
258
252
346
328 | 275
289
211
273 | 654
741
733
801 | 397
649
849
680 | 416
461
255
367 | 1,980
1,480
2,490
1,720 | 1,160
1,030
1,210
2,720
3,830 | 1,050
7,990
880
806 | 755
829 | Station
Conductance
430 | | 52
91
112
72
77 | 63
51
109
33
29 | 60
37
41
100 | 31
26
34
27
27
32 | 61
29
40
40 | 49
49
30 | 35
32
32
40
30 | 53
57
26
38 | 88
124
117
131 | 62
98
164
85 | 90
98
34
39 | 492
308
660
375 | 230
185
245
700
1,060 | 200
2,550
157
144 | 94
123
130 | 2
Chloride
59 | | 404
533
568
867
583 | 479
436
510
387
341 | 351
359
384
404 | 311
316
372
306
292 | 486
278
324
375 | 351
411
468
449 | 281
262
254
254
347
322 | 306
288
211
273 | 626
744
736
818 | 457
634
845
700 | 426
474
255
371 | 1,750
1,270
2,530
1,700 | 1,090
1,020
1,230
2,720
3,800 | 1,070
6,090
821
805 | 609
756
826 | Station 3
Conductance C | | 39
76
76
181
85 | 60
51
71
35
28 | 40
38
42
50 | 36
26
36
27
27 | 67
29
40
46 | 30
49
49 | 35
32
30
30 | 61
58
27
38 | 87
124
117
136 | 66
97
164
86 | 92
101
34
40 | 410
260
670
365 | 212
182
252
720
1,060 | 210
1,790
138
146 | 94
123
128 | 121 1 | | 400
463
583
553
557 | 477
436
520
386
346 | 314
347
380
409 | 305
313
326
305
287 | 442
280
324
352 | 352
430
451
447 | 279
293
251
367
339 | 324
288
265
270 | 632
744
729
803 | 467
636
828
688 | 460
520
253
377 | 2,130
1,430
2,560
2,280 | 1,320
1,020
1,240
4,450
3,800 | 1,010
2,750
901
795 | 607
821
837 | Station
Conductance 430 | | 38
56
89
82
77 | 63
51
72
34
29 | 36
41
49 | 32
26
36
26
31 | 57
29
40
41 | 30
52
60
49 | 34
44
32
42
32 | 58
38
38 | 87
124
115
132 | 69
98
156
86 | 92
110
34
40 | 532
31.5
670
560 | 285
180
255
1,280
1,060 | 192
730
166
141 | 94
138
132 | Ch 6 | | 404
462
600
502
628 | .510
435
612
386
354 | 431
369
379
588 | 305
336
489
320
5287 | 453
290
327
343 | 351
414
498
449 | 279
257
291
352
340 | 276
288
211
267 | 1,000 · 746 · 726 · 809 | 394
636
818
686 | 456
582
264
373 | 1,970
2,260
2,580
2,580 | 9,710
1,030
3,550
 | 1,010
2,750
875
853 | 612 95
755 122
796 122 | Statior
Conductance
427 | | 40
57
82
75
85 | 70
51
98
34
29 | 72
42
41
103 | 30
32
81
30 | 59
30
40 | 30
50
73
49 | 34
32
42
42
32 | 53
58
24 | 198
123
114
134 | 62
98
155
84 | 94
121
36
40 | 472
575
680
800 | 3,160
185
1,020
5,280 | 192
728
155
154 | 95
122
122 | Chloride | # TRINITY RIVER BASIN--Continued # 674. TRINITY BAY AT MOUTH OF TRINITY RIVER NEAR ANAHUAC, TEX.--Continued | | | Statio | | Statio | | ion, water year Oc
Station | | Station | | |------|--------------------|-------------|----------|-------------|----------|-------------------------------|--------|-------------|---------| | | Date of Collection | Conductance | Chloride | Conductance | | Conductance | | Conductance | | | uly | 1, 1959 | 700 | 1 32 | 588 | 104 | 591 | 103 | 667 | 116 | | uly | 3 | 321 | 27 | 319 | 27 | 324 | 2.7 | 447 | 46 | | | 6 | 388 | 32 | 518 | 71 | 386 | 32 | 386 | 31 | | | 10 | 388 | 38 | 386 | 38 | 461 | 59 | 388 | 37 | | | | | | | | | | | 3, | | uly | 13 | 463 | 59 | 463 | 59 | 561 | 81 | 513 | 72 | | uly | 14 | 518 | 72 | 662 | 109 | 518 | 72 | 583 | 90 | | uly | 17 | 583 | 83 | 576 | 82 | 577 | 84 | 582 | 85 | | uly | 20 | 963 | 183 | 756 | 122 | 754 | 123 | 780 | 125 | | | 21 | 648 | 99 | | 1.00 | | | | | | | | (50000) | W | 647 | 100 | 646 | 100 | 645 | 99 | | | 24 | 851 | 1 72 | 843 | 169 | 845 | 170 | 851 | 169 | | | 26 | 435 | 67 | 439 | 67 | 435 | 67 | 438 | 67 | | | 29 | 313 | 49 | 296 | 43 | 316 | 50 | 304 | 48 | | uly | 31 | 307 | 57 | 301 | 57 | 299 | 56 | 301 | 57 | | ug. | 3 | 303 | 57 | 320 | 62 | 301 | 57 | 301 | 58 | | ug. | 5 | 324 | 60 | 328 | 60 | 326 | 60 | 343 | 64 | | ug. | 7 | 564 | 100 | 569 | 100 | 556 | 98 | 555 | 97 | | ıg. | 10 | 569 | 102 | 569 | 103 | 569 | 103 | 566 | 102 | | | | | | | 00000000 | | (2000) | 1000000 | 5764551 | | ug. | 12 | 578 | 104 | 582 | 105 | 579 | 104 | 583 | 105 | | ug. | 14 | 695 | 120 | 701 | 127 | 695 | 126 | 693 | 126 | | ıg. | 17 | 722 | 133 | 712 | 133 | 704 | 131 | 709 | 131 | | ıg. | 19 | 790 | 156 | 796 | 157 | 790 | 155 | 891 | 179 | | | | 01.5 | | 201 | | | | | | | | 21 | 815 | 157 | 721 | 134 | 783 | 152 | 757 | 143 | | | 24 | 628 | 126 | 667 | 129 | 756 | 151 | 761 | 153 | | | 26 | 1,300 | 312 | 1,300 | 310 | 2,350 | 632 | 1,110 | 258 | | | 28 | 567 | 102 | 562 | 100 | 593 | 105 | 600 | 106 | | ag. | 31 | 570 | 95 | 514 | 95 | 510 | 93 | 510 | 92 | | ept. | . 2 | 660 | 122 | 665 | 125 | 674 | 127 | 670 | 126 | | ept. | 4 | 690 | 134 | 709 | 138 | 649 | 121 | 650 | 121 | | ept. | . 7 | 682 | 129 | 682 | 130 | 708 | 140 | 722 | 142 | | ept. | 9 | 877 | 181 | 848 | 172 | 988 | 216 | 1,160 | 267 | | | 11 | 886 | 168 | 872 | 167 | 01.0 | 1.70 | 044 | 106 | | |
| | | | 167 | 918 | 178 | 944 | 186 | | | 14 | 1,510 | 370 | 1,510 | 370 | 1,800 | 455 | 1,850 | 480 | | | 16 | 1,260 | 265 | 1,250 | 265 | 1,180 | 248 | 1,220 | 260 | | ept. | 18 | 1,430 | 318 | 1,430 | 315 | 1,420 | 310 | 1,420 | 310 | | ept. | 21 | 4,470 | 1,320 | 5,400 | 1,620 | 1,450 | 320 | 8,390 | 2,680 | | ept. | 22 | 8,040 | 2,550 | 8,050 | 2,550 | 8,860 | 2,820 | 9,130 | 2,950 | | pt. | 25 | 5,460 | 1,620 | 5,380 | 1,620 | 6,470 | 2,000 | 7,420 | 2,320 | | nt. | 28 | 2,210 | 570 | 2,280 | 600 | 5,770 | 1,750 | 5,550 | 1,680 | TRINITY RIVER BASIN -- Continued MISCELLANEOUS AMALYSES OF STREAMS IN TRINITY RIVER BASIN IN TEXAS | | Mean | | | Ę. | Mag- | Š | ę. | Bicar- | Sul- | Chlo- | Fluo- | ź | ò | ت م | Dissolved solids
(calculated) | Hds
t) | Har
as O | Hardness
as CaCO, | Per- | So- | Specific
conduct- | | |--------------------|-----------------|-------------------------------|------|----------------|--------------|---------------|-------------|--|---------------|--|-------------|--------------------|------------|------------------------------|----------------------------------|--------------------|---------------------------------|----------------------|-------------|--------------------------|--------------------------------------|-----| | Date of collection | charge
(cfs) | Silica
(SiO ₂) | (Fe) | Ca) | sium
(Mg) | dium
(Na.) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | (NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon- | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | | | | | | | | 4 | 428. WES | I FORK I | WEST FORK TRINITY RIVER NEAR JACKSBORO | IVER NEA | AR JACKSE | SORO | | | | | | | | | | | Apr. 21, 1959 | 34 | 9.0 | | 38 | 9.4 | 06 | | 7.4 | 12 | 181 | 0.3 | 1.2 | | 377 | 0.51 | | 134 | 73 | 09 | 3.4 | 738 | 6.9 | | | | | | | | | LAR | LAKE AMON G. CARTER 6 MILES SOUTHWEST OF BOWIE | . CARTER | 6 MILES | SOUTHWE | ST OF BC | WIE | | | | | | | | | | | Apr. 21, 1959 | | 1.0 | | 24 | 6.4 | 8.0 | 5.4 | 06 | 8.8 | 17 | 0.0 | 0.5 | | 111 | 0.15 | | 80 | 9 | 17 | 5.0 | 220 | 6.9 | | | | | | | | | 502. E | ELM FORK TRINITY RIVER RESERVOIR 6-0 NEAR MJENSTER | TRINITY | RIVER RE | SERVOIR | 6-0 NEAB | MUENSE | 23 | | | | | | | | | | Jan. 15, 1959 | | 3.2 | | 58
62
45 | 3.9 | 35 | | 152 | 25 27 27 | 77 68 | 0.5 | 2.5 | | 294 273 265 | 0.40 | | 161 | 36 | 39 | 1.6 | 514 | 7.7 | | | | | | | | | | | FORK IR | ELM FORK TRINITY RIVER NEAR MJENSTER | VER NEAR | MUENSTE | P. | | | | | | | | | | | Jan. 15, 1959 | 0.8 | 10 | | 190 | 17 | 175 | | 230 | 55 | 480
518 | 0.2 | 0.0 | | 1,040 | 1.41 | | 544 590 | 356 | 41 | 3.3 | 1,920 | 7.7 | | 21 | | | | | | | | 515. | | CLEAR CREEK NEAR SANGER | EAR SANC | ER | | | | | | | | | | | | Apr. 22, 1959 | 8.7 | 9.6 | | 96 | 14 | 80 | H | 191 | 99 | 180 | 0.3 | 0.0 | | 519 | 0.71 | | 282 | 150 | 38 | 2.1 | 951 | 7.7 | | | | | | | | | HICK | HICKORY CREEK AT US HIGHWAY 77 NEAR LEWISVILLE | C AT US | HIGHWAY | 77 NEAR | LEWISVIL | 31 | | | | | | | | | | | Apr. 22, 1959 | | 2.0 | | 54 | 5.0 | 27 | | 141 | 31 | 95 | 0.1 | 0.2 | | 234 | 0.32 | | 155 | 07 | 27 | 6.0 | 737 | 7.9 | | | | | | | | | SOUT | SOUTH PRONG CREEK AT US HIGHWAY 77 NEAR WAXAHACHIE | CREEK AT | US HIGH | WAY 77 N | TEAR WAXA | HACHIE | | | | | | | | | | | Apr. 22, 1959 | | 111 | | 78 | 6.0 | 5.7 | 1.2 | 218 | 21 | 7.2 | 0.1 | 1.5 | | 253 | 0.34 | | 21.3 | 35 | 2 | 0.2 | 075 | 7.6 | | | | | | | | | | | MILL CR | MILL CREEK AT MILFORD | ILFORD | | | | | | | | | | | | | ABE: 22. 1959 | | 10 | | 80 | 1.0 | 6.1 | 1.0 | 216 | 20 | 8.0 | 0.1 | 7.7 | | 240 | 0.33 | | 204 | 27 | 4 | 0 | 1,23 | 1 5 | SAM JACINTO RIVER BASIN MISCELLANEOUS ANALYSES OF STREAMS IN SAN JACINTO RIVER BASIN IN TEXAS | - | Mean | | 5 | S. | Mag- | - S | | Bicar- | Sul- | Chlo | Fluo | ž. | å | Dis
O | Dissolved solids
(calculated) | sp < | Hardness
as CaCO, | 00 | Per- | So- | Specific
conduct- | | |---------------|-------------------------|-------------------------------|------|--------------|--------------|-----|-------------|-------------------------------|---------------|--|-------------|-----------------------------|------------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|-----| | | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₂) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hď | | | | | | | | | 680. | WEST FO | RK OF S. | WEST FORK OF SAN JACINTO RIVER NEAR CONROE | O RIVER | NEAR CO | NROE | | | | | | | | | | | Mar. 18, 1959 | 0.47 | 20 | | 90 | 8.4 | 07 | | 132 | 7.6 | 81 | 0.2 | 0.0 | | 269 | 0.37 | | 144 | 36 | 3.7 | 7.1 | 667 | 7.5 | | | | | | | | | | 685. | | SPRING CREEK NEAR SPRING | EAR SPR | ING | | | | | | | | | | | | Mar. 18, 1959 | 21.0 | 1.5 | | 23 | 4.1 | 30 | | 59 | 5.9 | 57 | 0.1 | 0.0 | | 167 | 0.23 | | 74 | 22 | 47 | 1.5 | 312 | 7.4 | | | | | | | | | | .069 | CYPRESS | 690. CYPRESS CREEK NEAR WESTFIELD | AR WEST | FIELD | | | | | | | | | | | | Mar. 18, 1959 | 1.0 | 9.6 | | 31 | 5.8 | 101 | | 118 | 2.5 | 140 | 4.0 | 0.2 | | 371 | 05.0 | | 102 | 5 | 89 | 7.4 | 693 | 7.3 | ### BRAZOS RIVER BASIN ### 805. DOUBLE MOUNTAIN FORK BRAZOS RIVER NEAR ASPERMONT, TEX. LOCATION.--At gaging station at bridge on U. S. Highway 83, 8 miles downstream from Mountain Creek, and 10 miles south of Aspermont, Stonewall County. DRAINAGE AREA.--7,980 square miles, approximately, of which 6,470 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: October 1948 to November 1951, October 1956 to September 1959. Water temperatures: November 1949 to November 1951, October 1956 to September 1959. Sediment records: November 1949 to September 1951. EXTREMES, 1958-59.--Dissolved solids: Maximum, 4,840 ppm Aug. 1-7; minimum, 715 ppm July 1-6. Hardness: Maximum, 2,210 ppm Mar. 16-31; minimum, 273 ppm May 11-15, 18-21. Specific conductance: Maximum daily, 6,890 micrombos Aug. 3; minimum daily, 860 micrombos July 3. Water temperatures: Maximum, 94°F June 18; minimum, 34°F Jan. 5, 15, Feb. 1-2. EXTREMES, 1948-51, 1956-59.--Dissolved solids: Maximum, 6,350 ppm Feb. 23-28, 1958; minimum, 636 ppm Oct. 22-28, 1957. Hardness: Maximum, 2,510 ppm Aug. 5, 8, 1951; minimum, 193 ppm Oct. 22-28, 1957. Specific conductance: Maximum daily, 10,400 micrombos Feb. 25, 1958; minimum freezing point Jan. 4, 1950, Jan. 29, 1951, Jan. 16, 1957. REMARKS.--Values reported for dissolved solids: Concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents. Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Mean | 20000 | | Cal- | Mag- | So- Po | - Bi | icar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dia | solved so | olids | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |--|---|---|--------------|---|---|--|---|---|---|---|-------------|--|------------|---|--|---|--|--|--|---|--|--| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₁) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium siu (Na) (K | bo | onate
(CO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | mhos at 25°C) | pН | | Oct. 1-3, 12-13, 1958-
Oct. 4-11, 14-20
Oct. 21-31 | 8.27
.77
.28
54.3 | 10
11
14
13
11 | | 1.69
405
570
640
1.67
385 | 1.7
50
75
86
20
54 | 215
629
555
529
262
697 | 1 | 106
116
80
109
126
140 | 500
1,130
1,620
1,800
474
1,100 | 248
930
840
805
332
1,020 | | 3.0
.0
.8
1.0
4.0
1.0 | | 1,210
3,210
3,710
3,930
1,330
3,340 |
1.65
4.37
5.05
5.34
1.81
4.54 | 237
71.7
7.71
2.97
195
132 | 492
1,220
1,730
1,950
498
1,180 | 404
1,120
1,660
1,860
395
1,070 | 49
53
41
37
53
56 | 4.2
7.8
5.8
5.2
5.1
8.8 | 1,850
4,700
4,930
5,050
2,120
4,930 | 8.0
7.9
7.5
7.6
7.8
7.9 | | Dec. 1-15 | .59 | 14
16
12
11 | | 575
630
660
685 | 72
73
82
93 | 790
665
558
603 | 9.1 | 144
154
142
136 | 1,600
1,780
1,760
1,820 | 1,180
950
910
990 | | 1.0
1.0
.0 | | 4,300
4,190
4,060
4,270 | 5.85
5.70
5.52
5.81 | 19.2
6.67
5.04
3.23 | 1,730
1,870
1,980
2,090 | 1,610
1,750
1,870
1,980 | 50
44
38
39 | 8.3
6.7
5.4
5.7 | 5,850
5,400
5,320
5,590 | 8.0
8.0
8.0
8.1 | | Feb. 1-10 | a .09 | 13
12
11
13
12 | | 665
690
690
690
720 | 103
110
106
96
101 | 452
345
334
556
596 | 1 | 120
122
124
107
122 | 1,550
1,330
1,250
1,970
2,000 | 960
1,020
1,050
840
940 | | .0
.5
.0
2.0 | | 3,800
3,570
3,500
4,220
4,430 | 5.17
4.86
4.76
5.74
6.02 | 3.28
.87
1.89
1.25
2.75 | 2,080
2,170
2,160
2,120
2,210 | 1,980
2,070
2,060
2,030
2,110 | 32
26
25
36
37 | 4.3
3.2
3.1
5.3
5.5 | 5,510
5,690
5,730
5,300
5,590 | 7.7
7.8
7.7
7.5
7.7 | | Apr. 1-7 | 175
25.3
.63
21.4
212
135 | 12
11
9.4
13
15
16
16
20 | | 680
283
442
680
555
232
83
135
470 | 106
24
46
98
72
25
16
22
80 | 574 16
175
406
553
506
246
222
270
587 | 1 | 83
90
78
123
101
172
172
144
116 | 2,030
736
1,240
1,950
1,560
653
280
412
1,410 | 860
242
580
830
760
280
228
330
860 | 0.5 | .5
5.6
1.5
1.0
2.2
2.0
1.5
3.0
2.0 | | 4,310
1,520
2,760
4,180
3,520
1,540
966
1,260
3,480 | 5.86
2.07
3.75
5.68
4.79
2.09
1.31
1.71
4.73 | 1.63
718
189
7.11
203
881
352
391
36.8 | 2,130
805
1,290
2,100
1,680
682
273
428
1,500 | 2,060
731
1,230
2,000
1,600
541
132
310
1,410 | 37
32
41
36
40
44
64
58 | 5.4
2.7
4.9
5.2
5.4
4.1
5.8
5.7
6.6 | 5,400
2,110
3,690
5,200
4,560
2,200
1,520
2,000
4,680 | 7.3
7.6
7.5
7.6
7.6
7.6
7.7
7.9 | | June 1 | 1,535
2,933
29.4
751
4,604
258
207
749 | 16
16
17
15
15
16
16
16 | | 255
105
350
134
110
160
282
258
415 | 27
16
50
17
14
19
27
19 | 212
136
637
148
99
180
298
167 | 1 1 1 1 1 1 | 77
103
128
104
113
110
106
96
89
104 | 706
300
1,010
374
318
454
760
700
1,170 | 870
275
145
940
172
88
218
420
200
1,160 | | 1.2
3.0
.5
3.2
3.0
1.5
1.2 | | 1,540
790
3,060
947
715
1,100
1,850
1,400
3,660 | 2.09
1.07
4.16
1.29
.97
1.50
2.52
1.90
4.98 | 6,380
6,260
243
1,920
8,890
766
1,030
2,830
315 | 2,000
747
328
1,080
404
332
477
814
722
1,200 | 1,940
662
223
994
312
242
390
736
648
1,110 | 38
47
56
44
39
45
44
33
59 | 3.4
3.3
8.4
3.2
2.4
3.6
4.5
2.7 | 5,310
2,190
1,230
4,540
1,420
1,060
1,630
2,650
1,930
5,230 | 7.8
7.5
7.5
7.5
7.5
7.4
7.6
7.5
7.2
7.4 | | Aug. 1-7 | 948
52.0
5.01
a .12 | 18
14
23
20
20
18 | | 590
166
195
485
685
685 | 80
17
27
70
94
97 | 969
110
257
717
559
518 | 1 1 1 | | 1,600
446
565
1,340
1,930
1,910 | 1,530
126
338
1,120
860
810 | | 1.0
3.2
2.0
1.0
2.8 | | 4,840
953
1,460
3,800
4,200
4,100 | 6.58
1.30
1.99
5.17
5.71
5.58 | 64.8
2,440
205
51.4
1.36
2.10 | 1,800
484
598
1,500
2,100
2,110 | 1,720
406
506
1,420
2,010
2,010 | 54
33
48
51
37
35 | 9.9
2.2
4.6
8.0
5.3
4.9 | 6,690
1,310
2,140
5,240
5,210
5,080 | 7.2
7.6
7.9
7.8
7.2
7.2 | a Includes days of less than 0.05 cubic feet per second discharge. October 1958 to September 1959 given in Water-Supply Paper 1632. 812. CROTON CREEK NEAR JAYTON, TEX. LOCATION.--At gaging station, 300 feet upstream from county road ford, 1½ miles upstream from mouth and about 8 miles northeast of Jayton, Stonewall County. DRAINAGE AREA.--310 square miles, approximately. RECORDS AVAILABLE.--Chemical analyses: May to September 1959. Chemical analyses, in parts per million, May to September 1959 | | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Di | ssolved so | lids | Hard
as Co | dness
aCO, | Per- | So-
dium | Specific
conduct- | | Density | |--------------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-----|------------| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | at
20°C | | May 6, 1959 | 17.0 | | | | | 4,780 | | | 2,820 | 7,530 | | | | | | 3,230 | | 76 | | 22,600 | | 1.009 | | July 9 | 10 | | | | | 500 | | 73 | 871 | 755 | | | | | | 955 | 895 | 53 | | 3,810 | 7.1 | | | July 17 | .05 | | | | | 4,180 | | | 2,710 | 6,760 | | | | | | | | | | 20,400 | | 1.006 | | July 18 | | | | | | 5,490 | | | 3,040 | 9,020 | | | | | | | | | | 25,400 | 22 | 1.009 | | July 22 | .37 | | | | | 3,240 | | 22 | 2,700 | 5,100 | | | | | | | | | | 16,900 | | 1.004 | | Aug. 13 | .25 | | | | | 3,300 | | | 2,580 | 5,280 | | | | | | | | | | 16,800 | | 1.004 | | Aug. 14 | .04 | | | | | 3,610 | | | 2,720 | 5,800 | | | | | | | | | | 18,100 | | 1.005 | | Aug. 15 | 0 | | | 1 | | 3,790 | | | 2,770 | 6,040 | | | | | | | | | | 18,700 | | 1.005 | | Aug. 16 | 0 | | | | | 3,920 | | | 2,850 | 6,560 | | | | | | | | | | 19,400 | | 1.006 | | Aug. 17 | 0 | | | | | 3,940 | | | 2,800 | 6,370 | | | | | | | | | | 19,200 | | 1.005 | | Aug. 18 | 0 | | | | | 3,950 | | | 2,840 | 6,560 | | | | | | | | | | 19,700 | | 1.006 | | Aug. 19 | 0 | | | 1 | | 4,260 | | | 2,910 | 6,860 | | | | | | | | | | 20,400 | | 1.006 | | Aug. 20 | 22 | | | | | 3,270 | | | 2,590 | 5,030 | | | | | | 2,740 | | 72 | | 16,700 | | 1.004 | | Aug. 21 | 4.11 | | | | | 1,260 | | 73 | 2,060 | 1,980 | | | | | | 2,190 | 2,130 | 56 | | 8,340 | 7.5 | | | Aug. 22 | .58 | 1 | | 1 | | 2,070 | | | 2,310 | 3,270 | | | | | | 2,580 | | 64 | | 12,100 | | 1.001 | | Aug. 24 | .04 | | | | | 2,270 | | | 2,380 | 3,640 | | 8 | | | | 2,670 | | 65 | | 13,000 | | 1.002 | | Aug. 25 | 0 | | | | | 2,920 | | | 2,620 | 4,640 | | | | | | 3,000 | | 68 | | 15,600 | | 1.003 | | Aug. 28 | 0 | | | | | 5,490 | | | 2,860 | 8,430 | | 1 3 | | 1 | | | | | | 24,600 | | 1.008 | Note: Values given in this table are expressed in parts per million and should be multiplied by the density, where given, in any computation of loads. ## 813. SALT FLAT CREEK AT WEIR B NEAR ASPERMONT, TEX. LOCATION. -- At mouth, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE. -- Chemical analyses: October 1956 to March 1959. | | | | | , | Ch | emical a | nalyses | , in part | s per mil | llion, Oct | ober 1 | 958 to N | farch 1959 | | | | | | | | | | |-------------------------------|-------------------------|-------------------------------|--------------|----------------|---------------------|-------------------------|---------------------|-------------------------------|----------------------------|-------------------------------|-------------|-----------------------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|----------------|--------------------------|-------------------------------|-----|-------------------------| | | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | | ssolved so | | Hare
as Ce | | Per- | So-
dium | Specific
conduct- | | Density | | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(Cl) | ride
(F) | trate
(NO ₁) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25 C) | pН | at
20°C | | Oct. 22, 1958
Nov. 21 | 0.34
.46 | | | | | 90,000
89,000 | | | 3,050
3,180 | 142,000
140,000 | | | | | | 10,300
10,100 | | 95
95 | | 182,000
181,000 | | 1.180
1.178 | | Dec. 17Jan. 21, 1959 | .28
.31 |
| | | | 88,300
85,500 | | | 3,200
3,280 | 141,000
139,000 | | | | | | 9,670
9,950 | | 95
95 | | 150,000
148,000 | | 1.179
1.176 | | Feb. 19
Mar. 17
Mar. 26 | .28 | 24 | | 1,790
1,810 | | 90,300
99,
92,400 | 000 | 32
38 | 3,130
2,870
3,010 | 143,000
158,000
147,000 | | | 246,000 | 397 | | 9,710
10,500
9,780 | 10,500
9,750 | 95
95
95 | 420
406 | 150,000
173,000
150,000 | 7.2 | 1.184
1.198
1.187 | Note: Values given in this table are expressed in parts per million, and should be multiplied by the density in any computation of loads. 813.5. SALT CROTON CREEK AT WEIR C NEAR ASPERMONT, TEX. LOCATION.--Half a mile downstream from Salt Flat Creek, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: October 1956 to March 1959. Chemical analyses, in parts per million, October 1958 to March 1959 | | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | | solved so | | Hard
as Co | iness
ICO ₇ | Per- | So-
dium | Specific
conduct- | | | |-------------------------|-------------------------|-------------------------------|--------------|--------------|---------------------|------------------|---------------------|-------------------------------|----------------|--------------------|-------------|-----------------------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|--------------------------------------|-----|----------------------| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | рН | Densit
at
20°C | | Oct. 22, 1958 | 0.57
1.15 | | | | | 91,100
88,100 | | | 3,270
3,440 | 144,000
138,000 | | | | | | 9,720
9,350 | | 95
95 | | 182,000
181,000 | | 1.183 | | Dec. 17
an. 21, 1959 | . 70
. 76 | | | | | 85,200
89,600 | | | 3,440
3,520 | 135,000
140,000 | | | | | | 8,800
9,000 | | 95
96 | | 148,000
167,000 | | 1.171 | | eb. 19
ar. 26 | .64
.74 | 25 | | 1,720 | 1,110 | 91,600
95,300 | | 41 | 3,390
3,010 | 145,000
150,000 | | | 251,000 | 407 | | 9,120
8,860 | 8,820 | 96
96 | 441 | 150,000 | 7.4 | 1.184 | Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads. 814. SALT CROTOW CREEK AT WEIR D NEAR ASPERMONT, TEX. LOCATION.--About 500 feet upstream from Maystack Creek and 1,000 feet upstream from gaging station, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: October 1936 to September 1959. Chemical analyses, in parts per million, water year October 1958 to September 1959 | 961'1 | Hq | mocro-
mines at more at more at more at 2S° C) 184,000 184,000 184,000 184,000 184,000 184,000 185,000 | -qrosbs
noit
oitsr | -os
muib
-os
26
26
26
26
26
26 | -noVn
-notabo
 | cium,
magne-
sium
9,160
9,450
9,450
9,910
9,910
9,130 | znoT
rəq
yab | raq
-aras
food
 | Parts
taq
-lim
noil
 | Ni-
trate
(NO ₃) | ride
(F) | (CH) | 5ul-
fate
(SO.)
3,110
2,800
2,800
3,150
3,070
8,440 | Bicar- | esst
muis
(X) | 008'16 002'06 009'76 000'76 000'76 (PN) unip | (\$M) | (A2) | lron
(Fe) | (SiO ₂) | -siG
(s1s)
(s1s)
27.0
27.
28. | Date of collection Occober 9, 1958 Nov. 22 Nov. 51 Date. 5 Date. 5 | |-------|--------|---|--------------------------|--|----------------------|---|--------------------|--------------------------|----------------------------------|------------------------------------|-------------|--|---|--------|---------------------|--|-------|----------|--------------|---------------------|--|---| | 961'I | | 000,081
000,081
000,081 | | \$6
\$6
\$6
96 | | 084'6
094'6
084'6 | | | | | | 175,000
141,000
148,000
152,000 | 040'E
040'E
051'E | | | 002'06
009'76
008'16 | |

 | | | 17.
67.
27. | 0.61, 22 | | | | 000,021
000,281
000,021 | | \$6
\$6
\$6 | | 087'6
094'6 | | | :: | | | 175,000
141,000
148,000
152,000 | 040'E
040'E
051'E | | | 002'06
009'76 | |
 | | | Σ7.
Σ8. | Nov. 6 | | 0511 | | 000,581 | | \$6
\$6 | | 084,6 | | | | | | 000°771 | 070,£ | | | 002,06 | | | | | Σ7.
Σ8. | Nov. 21 | | | | 000,081 | | 56 | | 078,6 | | | | | | 000°771 | ۵,440 | | | 008'16 | | | | | 28. | Dec. 5 | | 181.1 | | 000'051 | | | | | | | | | | | | | 1 | | | 1 | | | | L | | 281.1 | | 000'051 | | | | | | | | | 1 | | | | | | | | - 1 | | 99. | | | V | | | | | | 041'6 | | | | 1 | 1 | 141,000 | 3,380 | | | 004,68 | | | 1 | \$1000000 | | 17 1000 | | | | 000'051 | | 56 | | 016'6 | | | | | | 143 '000 | 3'410 | | | 008'16 | | | | | 1.03 | 6561 ,0 .nat | | 571.1 | | 000'671 | | 56 | | 087'6 | | | | | | 000'681 | 005,€ | | | 007,78 | | | | | 95. | Jan. 21 | | 151.1 | | 000'091 | | 56 | | 015,8 | | | | | | 121,000 | 094, £ | | | 006'94 | | | | | 91.1 | Feb. 4 | | | | 152,000 | | 96 | | 050,6 | | | | | | 000 ' 75 T | 076'7 | | |
.007,76 | | | 1 | | 79. | Feb. 19 | | 0.000 | | 000,521 | | 96 | | 055,6 | | | | | | 000,721 | 076'7 | | | 000'66 | | 1 | | | ES. | 11 .ask | | 1,203 | ٥.٢ | 125,000 | 577 | 96 | 047'6 | 005'6 | | 787 | 000' 797 | | | 000'651 | 075,5 | 17 | | 008'66 | 082,1 | 007,1 | | zz | 07. | Z . TEM | | | 5.T | 152,000 | 854 | 96 | 096'8 | 066,8 | 3 | TE7 | 797 000 | | | 000,821 | 3,240 | 38 | | 000'00T | 091'1 | 069'T | 1 | 22 | 76. | aqA | | | | 000'671 | | 96 | | 072,6 | | | | | | 155,000 | 088,2 | | | 008,86 | | | | | 78. | Apr. 23 | | | | 002,48 | | ٤6 | | 088'5 | | | | | | 008'97 | 2,800 | | | 29,500 | | | 1 | | 28. | мау 6 | | 661'1 | | 000'871 | | 96 | | 078'8 | | | | | | 000'951 | 014,2 | | | 000'66 | | | | | ٤9٠ | KeM | | 1.033 | | 001'65 | | 86 | | 3,100 | 1 | | | | | 008,72 | 076' I | | | 008,71 | | | - 1 | | 96.1 | June | | | | 000'551 | | 96 | | 057,6 | 1 | | | | | 000'091 | 2,880 | | | 000'101 | | | - 1 | | 09. | 1 June 19 | | | | 008,12 | | 88 | | 047'1 | | | | | | 061,8 | 071,1 | | | 061'5 | | | 1 | | 31.0 | July 9 | | 871.1 | | 000, £21 | | 56 | | 027'6 | | | | | | 000'071 | 3,620 | | | 006,88 | | | | | 51. | | | | | 000'671 | | 96 | | 10,200 | | | | | | 000'091 | 079,5 | | | 000'001 | | | | | 85. | 9 .8nV | | 1000 | 100000 | 000'001 | | 76 | | 049'9 | 1 | | | | | 001,08 | 3,240 | | | 008,78 | | | - 1 | | 15. | | | | | 134,000 | | 56 | | 085,8 | | | | | | 000,701 | 088, 5 | I I | | 000,101 | | III | | | 64. | Suk | | | | 000'251 | | 56
96 | | 008,01 | 1 | | | | | 000'091 | 2,930 | | | 000,001 | | | | | 85.
92. | Aug. 30St. 18e | Note: Values Stven in this table are expressed in parts per million and should be multiplied by the density in any computation of loads. ### 814.5. HAYSTACK CREEK NEAR ASPERMONT, TEX. LOCATION.--About 400 feet upstream from mouth, about 20 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: October 1956 to September 1959. Chemical analyses in parts per million water year October 1958 to Contember 1959 | | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | | solved sol | | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | | |--------------------|-------------------------|-------------------------------|--------------|--------------|--------------|------------------|---------------------|-------------------------------|----------------|------------------|-------------|-----------------------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|------------------------------|-----|----------------------| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₁) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | Densit
at
20°C | | October 9, 1958 | 0.17 | | | | | 40,300
39,900 | | | 4,600
4,610 | 63,700
63,200 | | | | :: | | 6,900
6,910 | -: | 93
93 | | 120,000 | | 1.079 | | Nov. 6 | .20 | | | | | 38,600
35,200 | | | 4,440 | 59,800
55,500 | | | | | | 6,600
6,170 | | 93 | | 116,000 | | 1.076 | | Dec. 5 | .23 | | | | | 36,400 | | | 4,400 | 57,100 | | | | | | 1000 | | | | 110,000 | | 1.070 | | Dec. 17 | .26 | | | | | 35,300 | | | 4,230 | 55,200 | | | | | | 6,390
5,990 | | 93 | | 97,000 | | 1.072 | | Jan. 1, 1959 | .20 | | | | | 37,400 | | | 4,220 | 57,800 | | | | | | 6,190 | | 93 | | 100,000 | | 1.059 | | Jan. 21 | .17 | | | | | 44,900 | | | 4,610 | 70,300 | | | | | | 6,730 | | 94 | | 112,000 | | 1.088 | | Feb. 4 | .28 | | | | | 37,500 | | | 4,400 | 58,100 | | | | | | 6,190 | | 93 | | 109,000 | | 1.075 | | Feb. 19 | .22 | | | | | 38,200 | | | 4,330 | 59,500 | | | | | | 6,370 | | 93 | | 103,000 | ** | 1.076 | | Mar. 26 | .18 | 53 | | 1,840 | 573 | 44,300 | | 77 | 4,800 | 68,900 | | | 121,000 | 179 | | 6,860 | 6,880 | 93 | 231 | 104,000 | 7.9 | 1.078 | | Apr. 7 | .43 | 46 | | 1,660 | 494 | 43,500 | | 87 | 4,280 | 67,300 | | | 117,000 | 172 | | 6,170 | 6,100 | 94 | 241 | 110,000 | 7.9 | 1.084 | | Apr. 23 | .17 | 20 | | 1,710 | 506 | 38,500 | | 72 | 4,370 | 60,300 | | | 105,000 | 154 | | 6,350 | 6,290 | 93 | 210 | 103,000 | 7.5 | 1.078 | | May 6 | .11 | | | | | 30,900
45,500 | | | 4,140
5,050 | 48,500
71,500 | | | | | | 5,880
7,440 | | 92 | | 87,200 | | 1.061 | | | | | | 1000 | | | | | | | | | | | | 7,440 | | 93 | | 112,000 | | 1.091 | | June 2 | .21
a .06 | | | | | 21,600 | | | 3,440 | 33,600 | | | | | | 4,840 | | 91 | | 68,200 | | 1.042 | | July 9 | 1.96 | | | | | 5,160 | | | 4,870
2,230 | 69,000
8,120 | | | | | | 6,990 | | 93 | | 113,000 | | 1.087 | | July 22 | a .01 | | | | | 41,500 | | | 4,870 | 65,600 | | | | | | 2,530
7,200 | | 93 | | 23,600 | | 1.010 | | Aug. 5 | .17 | | | | | 58,400 | | | E 110 | 00.000 | | | | | | 2014/00/20 | | 0.5 | | | | | | Aug. 12 | .03 | | | | | 39,100 | | | 5,110 | 90,800 | | | | | | 8,340 | | 94 | | 125,000 | | 1.115 | | Aug. 20 | .04 | | | | | 38,900 | | | 4,600 | 60,800 | | | | | | 7,200
6,860 | | 92 | | 102,000 | | 1.078 | | Aug. 30 | .14 | | | | | 48,600 | | | 5,250 | 75,700 | | | | | | 7,550 | | 93 | | 115,000 | | 1.078 | | Sept. 18 | a .06 | | 1 | | | 44,400 | | | 4,880 | 68,900 | | | | | | 7,350 | | 93 | - 22 | 114,000 | | 1.096 | a Field estimate. Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads. 815. SALT CROTON CREEK NEAR ASPERMONT, TEX. LOCATION.--At gaging station just below the mouth of Haystack Creek and about 20 miles northwest of Aspermont, Stonewall County. DAILMAG MEA.--C9 square males, approximately. RECORDS AVAILABLE.--Chemical analyses: October 1956 to September 1959. RECORDS AVAILABLE.--Chemical analyses: October 1958 to September 1959 given in Water-Supply Paper 1632. | | Density | at
20°C | | 1.170 | 1.189 | 1.174 | 1.150 | 1.163 | 1.163 | 1.156 | 1.168 | 1.142 | 1.177 | 1.186 | 1.181 | 1.169 | 1,188 | 1.051 | 1.181 | 1.031 | 1.183 | 1.012 | : | 1.131 | 1.200 | 1.057 | 1.114 | 1.099 | 1.196 | |------------------|--------------|---------------------|---------------------|--------------|---------|---------|---------|---------|---------|--------------|---------|---------|---------|---------|---------|---------|---------|--------|---------|--------|---------|--------|-------|---------|---------|---------|---------|---------|----------| | | | ЬН | | ; | 1 | ; | 1 | ; | ; | 1 | ; | 1 | ; | 1 | 7.5 | 7.6 | 1 | : | 1 | ; | ; | 1 | 1 | 1 | 1 | : | : | 1 | 1 | | Specific | conduct- | (micro- | mhos at
25°C) | 178,000 | 183,000 | 179,000 | 174,000 | 176,000 | 146,000 | 146,000 | 147,000 | 155,000 | 149,000 | 150,000 | 149,000 | 147,000 | 147,000 | 77,200 | 147,000 | 57,000 | 151,000 | 27,300 | 9,240 | 133,000 | 149,000 | 85,000 | 125,000 | 117,000 | 156,000 | | Ş | dium | adsorp- | ratio | ; | 1 | ! | ; | : | ; | 1 | 1 | į | ; | i | 397 | 401 | 1 | 1 | | ; | 1 | : | 1 | ; | 1 | ; | ; | : | ; | | | Per- | so- | dium | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 9.2 | 9.5 | 66 | 96 | 98 | 96 | 96 | 92 | 96 | 93 | 66 | 88 | 1 | 9.5 | 96 | 92 | 76 | 76 | 96 | | 100 | 5 | Non- | carbon-
ate | : | : | ; | 1 | ; | ; | ; | ; | 1 | ; | 1 | 9,250 | 8,380 | : | 1 | ; | ; | 1 | - | ; | 1 | ; | ; | ; | 1 | : | | Hardness | 88 | Cal- | magne-
sium | 9,320 | 9,760 | 9,450 | 9,220 | 8,860 | 8,510 | 8,750 | 8,730 | 8,230 | 9,180 | 9,270 | 9,290 | 8,420 | 9,260 | 7,680 | 8,980 | 2,810 | 0,640 | 1,840 | - | 8,310 | 9,830 | 5,680 | 7,990 | 7,420 | 9,780 | | ds | | Tons | per | Dissolved solids | (calculated) | Tons | acre-
foot | ; | ; | ; | ; | ; | ; | ; | ; | ; | ; | 1 | 376 | 356 | ; | 1 | 1 | ; | ; | ; | 1 | 1 | 1 | ; | ; | 1 | : | | Diss | (ca | Parts | mil-
lion | ; | 1 | ; | ; | ; | 1 | 1 | 1 | 1 | ! | 1 | 234,000 | 224,000 | ; | 1 | ; | 1 | ; | 1 | : | 1 | ; | ; | ; | ! | 1 | | | Ä. | trate | (NO ₂) | | | _ | Fluo- | ride | Ē | | | 340 | Chlo- | ride |
(j) | 132,000 | 148,000 | 135,000 | 126,000 | 129,000 | 128,000 | 132,000 | 133,000 | 113,000 | 139,000 | 145,000 | 140,000 | 133,000 | 147,000 | 40,900 | 142,000 | 26,400 | 144,000 | 10,200 | 2,800 | 104,000 | 155,000 | 44,900 | 89,800 | 78,300 | 153,000 | | | Sul- | fate | (2O') | 3,660 | 2,930 | 3,470 | 3,690 | 3,690 | 3,480 | 3,440 | 3,610 | 3,820 | 3,700 | 3,180 | 3,300 | 3,280 | 3,200 | 2,860 | 3,100 | 086,1 | 3,440 | 1,450 | 059 | 3,910 | 2,710 | 3,130 | 3,960 | 4,560 | 2,890 | | | Bicar- | bonate | (HCO ₃) | : | ! | ; | : | ; | ; | 1 | ; | 1 | 1 | ; | 54 | 20 | ; | ; | ; | ; | ; | ; | ; | : | 1 | : | ; | ! | : | | | å . | tas- | 3 | So- | dium | (Ng) | 84,300 | 94,500 | 85,600 | 79,300 | 81,700 | 81,300 | 82,600 | 84,400 | 71,800 | 88,000 | 92,300 | 88,100 | 84,600 | 93,400 | 25,400 | 89,400 | 16,700 | 89,700 | 6,430 | 1,790 | 005, 39 | 98,800 | 28,400 | 57,000 | 49,500 | 006,96 | | | Mag- | sium - | (Mg) | : | ; | : | ; | ; | ; | ; | ; | ; | ; | ; | 1,180 | 1,010 | ; | ; | ; | 1 | ; | 1 | ; | ! | ; | ; | : | ; | | | | | cium | | 1 | 1 | 1 | ; | 1 | : | : | ; | ; | 1 | : | 1,780 | 1,710 | ; | ; | ! | ; | : | ; | ; | 1 | 1 | : | ; | : | : | | | _ | (Fe) | :: | (SiO ₂) | | ; | ; | ; | ; | ; | ; | ; | ; | ; | : | ; | 28 | 26 | ; | ; | ; | 1 | ; | ; | ; | ; | ; | ; | ; | ; | ; | | | i | charge | (cfs) | 0.88 | .73 | . 73 | .83 | .81 | .78 | 1.08 | .83 | 1.36 | .72 | 06. | .73 | 1.34 | .86 | . 58 | .71 | 2.95 | . 56 | 36.6 | 280 |
.51 | .55 | 17. | 147 | 87. | .82 | | | | Date of collection | | Ост. 9, 1958 | Oct. 22 | Nov. 6 | Nov. 21 | Dec. 5 | Dec. 17 | Jan. 6, 1959 | Jan. 21 | Feb. 4 | Feb. 19 | Mar. 11 | Mar. 26 | Apr. 7 | Apr. 23 | May 6 | May 19 | - | : | ; | 1 | July 22 | Aug. 5 | Aug. 12 | Aug. 20 | Aug. 30 | Sept. 18 | Note: Values given in the table are expressed in parts per million and should be multiplied by the density, where given, in any computation of loads. 816. SALT CROTON CREEK AT MOUTH NEAR ASPERMONT, TEX. LOCATION.--At junction with Salt Fork Brazos River, 15 miles northwest of Aspermont, Stonewall County. RECORDS AVAILABLE.--Chemical analyses: December 1957 to June 1959. Chemical analyses, in parts per million, October 1958 to June 1959 | | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | | ssolved so | | Hard
as C | iness
aCO; | Per- | So-
dium | Specific conduct- | | Density | |---------------------------|-------------------------|-------------------------------|--------------|--------------|--------------|---------------------------|---------------------|-------------------------------|-------------------------|----------------------------|-------------|-----------------------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|----------------|--------------------------|-----------------------------|-----|-------------------------| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₁) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25°C) | pН | at
20°C | | Oct. 9, 1958 | 0.29 | | | | | 39,700
72,700 | | | 3,850
3,770 | 62,600
117,000 | | | | | | 7,750
8,890 | | 92
95 | | 119,000
169,000 | | 1.078 | | Dec. 4 | .78
1.34 | | | | | 74,700
77,200 | | | 3,620
3,580 | 119,000
122,000 | | | | | | 8,880
8,840 | | 95
95 | | 171,000
143,000 | | 1.149 | | Feb. 5
Mar. 12 | 1.08 | | | | | 76,400
93,800 | | | 3,640
3,290 | 120,000
149,000 | | | | | | 8,330
9,570 | | 95
96 | | 159,000
151,000 | | 1.152
1.191 | | Apr. 8
May 5
May 20 | 14.3 | 29 | | 921 | 296 | 27,200
8,670
34,500 | | 57 | 1,850
1,730
2,780 | 43,000
13,400
53,900 | | | 73,300 | 105 | | 3,520
2,220
5,290 | 3,470 | 94
89
93 | 200 | 82,700
33,000
94,300 | 7.3 | 1.053
1.016
1.067 | | June 18 | a .05 | | | | | 35,100 | | | 3,570 | 56,600 | | | | | | 6,360 | | 92 | | 98,300 | | 1.069 | a Field estimate Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads. ### 820. SALT FORK BRAZOS RIVER NEAR ASPERMONT TEX LOCATION.--At gaging station at bridge on U. S. Highway 83, 5½ miles downstream from Salt Croton Creek and 13.2 miles northwest of Aspermont, Stonewall County. DRAINAGE AREA.--4,830 square miles, approximately, of which 2,770 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: October 1945 to September 1951, October 1945 to September 1959. Water temperatures: October 1948 to September 1951, October 1956 to September 1959 EXTREMES, 1958-59. -- Dissolved solids: Maximum, 99.200 ppm Mar, 30-31; minimum, 2.130 ppm Aug. 8-12. Hardness: Maximum, 6.200 ppm Mar, 30-31; minimum, 440 ppm Aug. 8-12. Specific conductance: Maximum daily, 115,000 micromhos Mar. 30: minimum daily, 2.870 micromhos July 2. Water temperatures: Maximum, 95°F July 5; minimum, freezing point on Dec. 13, Feb. 6. EXTREMES, 1948-51, 1956-59.--Dissolved solids: Maximum, 99,200 ppm Mar. 30-31, 1959; minimum, 1,280 ppm June 2-4, 1957. Hardness: Maximum, 6,200 ppm Mar. 30-31, 1959; minimum, 372 ppm May 19-23, 24 (12-10 p.m.), 1951. Specific conductance: Maximum daily, 115,000 micromhos Mar. 30, 1959; minimum daily, 1,820 micromhos June 3, 1957. Water temperatures: Maximum, 95°F July 5, 1959; minimum, freezing point on many days during winter months. REMARKS, -- Records of specific conductance of daily samples available in district office at Austin. Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632 Chemical analyses, in parts per million, water year October 1958 to September 1959 Hardness Specific as CoCO. Mean Mag-Cal-Po-(calculated) Perconduct. Sa Ricar-Sul. Chlo-Fina Nidium Density dis-Silica Iron netascent ance nН cium Date of collection dium bonate fate ride ride trate Parts Tons Caladsorp. 91 charge (SiO.) (Fe) .i.m -i... Tons /_:--a (Ca) (Na) (HCO) tion (Mg) (SO,) (CI) (F) (NO,) per Der cium. 20°C (cfs) (K) carbon. dium mhos at per ratio milacre. magne day ate 25 C) lion foot sium Oct. 1-4, 12-13, 1958--31.8 11 534 110 3 780 105 1 310 6 060 11.900 16 3 1 020 1.780 1 700 18 500 .007 ___ 30 1.017 Oct 5-9----4.00 9.4 885 197 8.590 116 2 190 13 700 2 920 122 25.600 35 4 276 26 68 36 7.00 Oct - 10-11 14-31----2.33 1.120 13,600 156 2.800 21.700 3 800 53 900 39.600 55 3 2/.0 4.020 22 93 Nov. 1-15-----5.75 13 1.300 15,100 139 3,030 24.200 1 030 ___ 44 000 61 6 683 4 490 4 370 22 98 58 600 Nov. 16-30-----1.91 9.0 1.140 7.8 261 13,700 140 2,630 21 900 3,800 88 95 53.600 1.027 39.700 55 4 3.920 ___ 205 Dec 1-15----.61 14 1.250 296 16.300 132 3,100 25,900 46.900 65.8 77.2 4 340 4 230 89 108 56 400 7.9 1.032 --Dec. 16-31-----.88 11 1,290 323 19,100 175 3,030 30,300 54 100 4 550 4,400 90 63 600 1.038 76 4 129 123 --Ian 1-20 1959-----.72 10 1,270 19.800 343 176 3.080 30.800 55 400 78.3 108 4.580 4.400 90 65.100 7.3 1.039 --127 Ian 21-31-----.72 12 1,340 392 20,200 157 3,180 32,200 --57,400 81.2 112 4.830 90 125 69,500 7 2 1.040 4 960 Feb. 1-6-----1.75 11 462 1.380 29.200 143 3,050 46,400 80.600 116 381 5.340 5.230 173 89.300 Feb. 7-28-----52,200 62.0 4,990 .44 13 1.360 388 18,100 164 3,280 29,000 73.5 4.850 112 63,900 7.8 1.036 .36 Mar. 1-14-----14 1,410 341 15,500 148 3,490 24,700 45,500 63.9 44.7 4,920 4,800 87 56,900 1.032 Mar. 15-29-----.41 12 1 440 352 15 600 159 3,520 24.900 45.900 64.5 50.8 5,040 4,910 87 95 57 000 8.0 1.033 Mar. 30-31-----.60 24 1,570 556 36.100 90 3.510 57,400 --99,200 145 161 6,200 6,130 93 199 101,000 1.072 4,950 Apr. 1-7, 9-18----5.78 11 1.400 18.300 I 129 381 3.350 29.600 53.100 75.0 829 5.060 89 112 54 900 1 038 --Apr. 8-----49.0 188 12,400 1,620 86 19.800 48.5 4.600 2.620 2.550 106 46.300 7.5 1.024 --34.800 91 Apr. 19-20-----17.0 510 5.980 1.660 1.210 9.500 --17.400 23.9 799 1.740 88 62 26.000 7.8 1.011 Apr. 21-30-----.59 326 97 9.7 1.310 15,200 3.210 24,200 4.490 55.500 44.300 62.1 70.6 4,610 7.4 1.031 --May 1-4----18.0 290 1.190 19,700 2.740 31,300 --55.300 78.1 2.690 4.160 4.090 91 133 64,500 7.2 1.039 May 3-8. Il-----14 4,200 86.6 546 111 1,340 6,580 --12,900 3,020 1,770 1,670 19,300 7.6 1 007 17.7 May 9-10, 15, 19-20---31.4 16 339 70 2,170 134 881 3,420 --6.960 9.48 1,130 1,020 28 11,000 7.6 .002 May 12-14, 16-18, 21-22 12.1 13 711 170 5,760 109 1,770 20,300 28.0 2,380 59 28,400 7.4 10.800 2.470 1.013 May 23-26-----1.70 9.6 1.190 371 21 900 112 2,650 35,000 4,400 142 69,800 61.200 86.8 281 4.490 91 May 27-31-----1.78 17 1.090 302 12.900 1.71 2,560 20,700 --37,700 3,960 3,820 88 89 47,800 7.5 1.026 52.6 181 2,580 June 1-2----124 22 1 150 328 123 4,120 123 18 400 29.400 --51,900 73.2 17.380 4.220 90 63.300 7.2 1.037 June 3-4. 10-11-----4.003 19 292 52 1,540 127 734 2,430 5,130 6.98 55,450 942 838 78 22 8.160 8.0 ---27 June 5-9----- 1.555 16 182 544 118 479 970 2.0 2.380 3.24 9,990 565 468 12 3 900 7.8 June 12-20-----51.4 19 590 147 4,230 6,800 114 1,530 --13,400 18.4 1,860 2,080 1.980 82 40 19 900 1.008 June 21-22-----79 0 --32,600 June 23-----1,740 16 430 50 2,830 113 1,110 8,870 41,670 1,190 83 34 13,700 7.8 4,380 --12.1 1,280 1.004 June 24-28, July 2-7, 13-16-----728 142 680 119 3,950 7.9 26 373 1.030 2.0 2,330 3.17 462 364 14 June 29-30, July 1----353 60 1,690 5,340 1,020 23 7.8 310 2.680 5,600 918 78 8.910 124 784 --7.62 --July 8-12, 17-----214 14 315 50 1.650 123 780 2.600 --5.470 7.44 3.160 890 78 23 8,750 7.4 992 --July 18, 21-22----237 450 64 1,120 9.19 1,390 1,300 23 23 1.950 109 3.100 6.760 4.330 75 10.200 7.7 ---July 19-20-----278 23 325 28 7.7 1.070 3.0 4.07 2.240 926 62 9.8 4.490 688 74 816 2.990 866 July 23-31-----12.7 15 752 174 5,380 105 1,970 23.4 2,590 2,510 82 46 23,500 7.3 1.011 8.610 --17,000 583 Aug. 1-4----1.60 15 154 7,140 111 2,100 11,400 --21,700 29.9 93 2,820 2,730 85 58 29,000 1.012 Aug. 5-7----.43 24 1,190 252 11,900 97 2,930 18,900 35,200 49.0 40.9 4,000 3,930 82 42,900 7.6 1.024 Aug. 8-12-----643 22 123 3.5 2.90 3,730 339 13 3,530 8.2 362 910 2.130 --Aug. 13-14, 22-23----40.2 230 44 1,220 1,870 1.0 4,080 5.55 755 663 19 5,540 112 1,200 Aug. 15-21, 24-25----20.0 454 82 2,410 108 3,810 8,020 10.9 433 1.470 1,380 78 12,000 7.3 1.003 Aug. 26-31, Sept. 1-3--2.29 16 834 193 6,170 99 2,070 9.970 19.300 26.6 119 2.870 2,790 32 50 .400 7.5 1.013 Sept. 4-15-----.32 21 ,450 334 16,100 121 3,550 25.700 --47.200 66.3 40.8 4,990 4,890 88 99 57,500 6.4 1.033 Sept. 15-36-----.780 11,600 2,990 19,800 36,600 151 5.860 5.730 46,600 1.025 Weighted average----5,020 6.83 1,710 850 750 7,700 Note: Values given in this table are expressed in parts per million and should be multiplied by the density in any computation of loads. 825. BRAZOS RIVER AT SEYMOUR, TEX. LOCATION, --At gaging station at bridge on U. S. Highways 277 and 283, three-quarters of a mile upstream from Wichita Valley Railway bridge, I mile southwest of Courthouse in Sevenur, Baylor County, and at mile 812. DARIMGEAREA.--L-409 square miles, approximately, of which 9,240 square miles is probably noncontributing. Make temperatures: August to September 1959. Which temperatures:
August to September 1959. Which temperatures: August to September 1959. Which temperatures are an expectation of August and September 1959. Which the September 1959 struct in Wascert 1959. | | Mean | į | | Cal- | Mag- | S | Po- | Bicar- | Sul- | Chlo- | Fluo | ž | Bo- | Dise
(ca | Dissolved solids
(calculated) | ids
) | Har
as C | Hardness
as CaCO, | Per- | So- | | |--------------------|-------------------------|--------|------|--------------|--------------|--------------|-------------|-------------------------------|---------------|--------------|-------------|-------|-----|------------------------------|----------------------------------|--------------------|---------------------------------|----------------------|-------------|--------------------------|---| | Date of collection | dis-
charge
(cfs) | (SiO,) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | (NO,) | (B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal.
cium,
magne-
sium | Non-
carbon- | so-
dium | adsorp-
tion
ratio | | | Aug. 1-8. 1939 | 34.9 | 22 | | 495 | 76 | 1,83 | 01 | 99 | 1,460 | 2,850 | ; | 1 | | 6,780 | 9.22 | 639 | 1,620 | 1.570 | 7.1 | 0.7 | - | | Aug. 9. 22-25 | 136 | 11 | | 007 | 67 | 1,50 | 00 | 102 | 1,090 | 2,350 | ; | 1 | | 5,470 | 7.44 | 2,010 | 1,270 | 1.190 | 7.2 | 1.8 | | | Aug. 10-11. 19-21 | 655 | 91 | | 295 | 42 | 93 | 30 | 101 | 822 | 015.1 | 8.0 | 2.0 | | 3,570 | 48.4 | 6,310 | 908 | 826 | 69 | 1.3 | | | Aug. 12-18 | 330 | 13 | | 189 | 24 | 48 | 35 | 92 | 536 | 700 | . 7 | 2.5 | | 2,000 | 2.72 | 1,780 | 570 | 767 | 6.3 | 90.00 | | | Aug. 26-31 | 17.4 | 1.4 | | 622 | 103 | 2.67 | 02 | 16 | 1,670 | 4,230 | : | : | | 9,360 | 12.8 | 055 | 1,980 | 1.900 | 7.5 | 26 | | | Sept. 1-2. 4-15 | | 1.2 | | 595 | 83 | 1,900 | 00 | 101 | 1,370 | 2,920 | ; | 1 | | 6,800 | 9.25 | 74.5 | 1,500 | 1 420 | 7.3 | 7.7 | | | Sept. 3 | 17.0 | 11 | | 214 | 3.7 | 83 | 3.7 | 72 | 614 | 1,280 | 7. | 2.5 | | 3,030 | 4.12 | 139 | | 627 | 7.3 | 77 | | | Sept. 16-30 | 0 | 13 | | 533 | 96 | 2,00 | 00 | 120 | 1,550 | 3,090 | - | : | | 7,340 | 0.01 | - | | 1,630 | 7.2 | 7.1 | | Hd Specific conduct-ance (micro-mhos at 25° C) 9.830 8.210 5.450 3.150 13.400 9,970 ### RDATOS DIVER RASIN - Continued ### 865. HUBBARD CREEK NEAR BRECKENRIDGE. TEX. LOCATION.--At gaging station at bridge on U. S. Highway 183, 2.3 miles downstream from Big Sandy Creek, 6.8 miles northwest of Breckenridge, Stephens County, 7 miles upstream from Conzales Creek, and 8 miles upstream from Clear Fork Brazos River. DRAINAGE AREA, -- 1,087 square miles. RECORDS AVAILABLE. -- Chemical analyses: April 1955 to September 1959. Water temperatures: April 1955 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 2,420 ppm Apr. 16-30; minimum, 143 ppm July 16. Hardness: Maximum, 1,140 ppm Apr. 16-30; minimum, 80 ppm July 16. Hardness: maximum, 1,140 ppm Apr. 10-30, minimum, 300 ppm July 10. Specific conductance: Maximum daily, 3,900 micromhos May 4; minimum daily, 254 micromhos July 16. EXTREMES. 1955-9,--Dissolved solids: Maximum, 3.100 ppm June 13, 1958; minimum, 118 ppm Feb. 6-8, 1957. Hardness: Maximum, 1,140 ppm Apr. 16-30, 1959; minimum, 72 ppm Feb. 6-8, 1957. Specific conductance: Maximum daily, 5,600 micromhos June 13, 1958; minimum daily, 121 micromhos Apr. 27, 1957. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. Chemical analyses, in parts per million, water year October 1958 to September 1959 Hardness Dissolved solids Specific as CaCO. Monn Mag-(calculated) Per conduct-Cal So Ricar. Sul Chlo-Fluo-Ni-Rodium C:1:-dis-Ivon tascent ance nH Date of collection cium dium bonate fate ride ride Parts adsorn trate ron Tons charge (SiO₂) (Fe) *inm Tons (micro-(Ca) (Na) (HCO₁) (SO,) (CI) (F) (NO.) (B) cium tion (cfs) (Mg) (K) carbondium mhos at milacre magne ratio 25° C) day ate lion foot sium Oct. 1-12, 1958-----2.39 9.0 15 153 198 0.1 2.0 0.73 3.46 236 50 3.0 985 8.1 110 Oct. 13-27----1.23 124 22 146 193 138 1.13 2.75 400 44 1,480 8.0 292 4.0 829 242 3.2 Oct. 28-31 Nov. 1-16a .10 171 38 172 170 319 340 .2 6.2 1,140 1.55 .31 583 444 39 1.940 7.8 Nov. 17-30----a0 6.4 201 44 193 224 374 370 1,310 1.78 682 499 38 3.2 2,150 7.9 9.6 Dec. 1-15-----6.8 208 45 1 76 236 370 355 .2 8.1 1,290 1.75 704 510 35 2.9 2,180 7.9 Dec. 16-31-----20 7.8 192 41 209 194 358 400 1,310 1.78 --61.9 488 3.6 2,160 7 9 8.2 Jan. 1-15, 1959-----5.5 200 52 195 5.8 223 366 418 .2 8.5 1,360 1.85 713 530 37 3.2 2,250 7.8 Jan. 16-31-----2.05 8.6 255 51 237 279 408 495 ---13 1,600 2.18 8.86 846 617 38 3.6 2,610 7.7 .31 Feb. 1-14-----9 9 230 60 1.40 7 9 262 1/17 4.90 528 16 1.670 2.27 820 700 4.1 4.0 2.670 Feb. 15-28-----.68 6.4 262 61 303 209 412 675 .4 12 1.830 2.49 3 36 904 733 42 4.4 3,030 7.9 Mar. 1-17----a .25 71 379 3.01 1.49 1 050 3.550 6.2 305 211 514 820 15 2.210 880 5.1 Mar. 18-31----a0 288 72 388 .4 45 7.5 608 2,230 3.03 916 3.500 7.7 121 790 15 --1.010 5.3 Apr. 1-15----310 77 381 151 660 810 11 2,340 3.18 1,090 966 43 5.0 3,690 7.6 5.6 Apr. 16-30----325 81 144 702 840 6.8 2,420 3.29 ,140 1,030 5.0 3,780 7.9 May 1-8----aO 298 76 438 631 900 .3 5.4 2,400 3.26 ,060 979 5.9 3,810 7.5 May 9-11, 22-23----- 1,291 8.8 46 44 97 95 .2 4.5 270 .37 941 40 1.6 538 7.5 May 12-21, 24-26----45.2 8.4 58 8.6 75 98 164 3.0 392 .53 47.8 180 100 47 2.4 774 7.3 May 27-31, June 1-----5.43 7.6 89 15 1.09 107 100 230 .3 2.8 607 .83 8.90 284 196 45 2.8 1,140 7.1 June 2-8----810 9 9 1.1. 1.1. 7.8 14 102 3.0 270 .37 590 142 65 7.0 7.1 June 9-20----7.48 1/4 42 18 117 152 58 252 .2 3.8 640 .87 12.9 304 179 46 2.9 1.200 7.9 Tune 21-24-----229 1.680 124 1.9 7.7 25 185 171 101 402 3.8 938 1.28 580 412 272 4 0 June 25-26-----145 10 40 9 8 58 81 1.05 20 17 178 .2 4.0 413 .56 162 186 100 2.6 805 7.5 June 27-30, July 1-3---43 40 243 .34 133 39 464 11 6 2 112 76 3 2 0 250 166 41 1 5 7.7 July 4-15-----54 139 50 24.0 9.8 70 116 27 368 23 8 170 47 702 7.1 8 8 . 3 2.2 76 2 3 July 16-----28 251 6.8 2.5 20 79 12 31 .1 3.5 143 19 96 9 80 15 35 1.0 254 7.6 July 17, Aug. 2-9----16.5 9.8 84 285 276 53 1.220 7 8 16 142 132 67 672 168 3.7 . 5 2 8 91 29 9 July 18-31-----55.3 12 42 8.3 48 103 22 94 4 280 38 41.8 139 43 1.8 517 7.5 2.2 Aug. 1, 16-20-----1.20 11 72 15 94 155 73 170 1.0 ь533 .72 1.73 241 114 2.6 894 7.7 . 5 Aug. 10-15-----11.6 11 57 11 69 143 1.0 385 .52 12.1 187 92 2.2 710 7.6 116 36 -4 Aug. 21-31-----92 20 129 .5 .92 187 43 1,110 7.5 a0 7.6 108 152 202 .8 ь677 312 2.7 Sept. 1-30----a4.00 108 142 153 126 278 ь839 9.06 352 226 1.370 7.6 Weighted average----47.9 56 104 24 121 42.0 162 76 628 b Residue on evaporation at 180°C. a Includes days of less than 0.05 cubic feet per second discharge. 881. SALT CREEK AT OLNEY, TEX. LOCATION .-- At gaging station at bridge on State Highway 199, 0.5 mile east of Olney, Young County. DRAINAGE AREA .-- 9.6 square miles. DRAINAGE AREA.--9.6 square miles. RECORDS AVAILABLE.--Chemical analyses: April 1958 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 3,670 ppm Apr. 23-26; minimum, 101 ppm Sept. 3. Hardness: Maximum, 962 ppm June 27-30, July 1-8; minimum, 69 ppm Sept. 3. Specific conductance: Maximum daily, 7,980 micromhos Apr. 26; minimum daily, 182 micromhos Sept. 3. EXTREMES, April 1958 - September 1959.--Dissolved solids: Maximum, 19,300 ppm July 4-5, 1958; minimum, 101 ppm Sept. 3, 1959. Hardness: Maximum, 4,040 ppm July 4-5, 1958; minimum, 69 ppm Sept. 3, 1959. Specific conductance: Maximum daily, 30,400 micromhos July 5, 1958; minimum daily, 182 micromhos Sept. 3, 1959. RENARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean
dis- | 631 | Iron | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved so | | Hard
as Co | inesz
zCO; | Per- | So-
dium | Specific
conduct- | | |---|--|--|------|--|--|--|--------------------------------------|--|--|--|---|---|------------|---|--|---|--|--|--|--|--|--| | Date of collection | charge
(cfs) | Silica
(SiO _z) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day |
Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | micro-
mhos at
25°C) | рН | | Oct. 1-7, 1958 Oct. 9-10, 18, 26, 29 Oct. 11, 19-24 Oct. 12-17 Oct. 27-28, 30-31, | a0.01
0
a .03
a .03 | 5.6
4.8
6.4
6.4 | | 50
57
28
31 | 12
16
8.6
5.7 | 21
22
13
7 | 8
2 | 107
104
108
96 | 12
10
6.2
5.4 | 388
430
210
120 | 0.4
.2
.3
.2 | 1.0
1.2
1.5
1.8 | | 740
798
6484
289 | 1.01
1.09
.66
.39 | 0.02

.04
.02 | 174
208
106
101 | 87
123
17
22 | 73
70
73
60 | 7.2
6.8
5.6
3.1 | 1.440
1.560
881
560 | 7.8
7.9
7.5
7.5 | | Nov. 1-4 | 0
a .08
0 | 2.1
4.6
2.8 | | 165
173
37 | 37
41
7.7 | 58
94
11 | 3 | 59
70
96 | 27
59
10 | 1,240
1,790
202 | .2
.5
.3 | .8
6.5
2.0 | | 2,080
3,050
b447 | 2.83
4.15
.61 | .66 | 564
600
124 | 51.5
542
46 | 69
77
67 | 11
17
4.5 | 3,970
5,600
833 | 7.2
7.1
7.6 | | Dec. 1-2 Dec. 7-12, 15-16 Dec. 14, 17-22 Dec. 29-31, Jan. 1-2, | a .05
0
0 | 3.9
3.6
2.8 | | 24
32
79 | 3.5
7.5
19 | 3
14
32 | 9 | 66
120
85 | 6.4
10
17 | 63
230
625 | .2 | 2.5
1.5
1.2 | | ь187
ь527
1,110 | .25
.72
1.51 | .03 | 74
111
275 | 20
13
206 | 51
74
72 | 1.8
6.2
8.4 | 336
965
2,160 | 7.3
8.2
7.9 | | 1959 Jan. 7-15 Jan. 16-17, 19-20 Jan. 18, 21-31 | a .04
0
0
a .01 | 6.1
2.5
1.8
3.5 | | 31
27
77
40 | 4.5
6.7
20
11 | 96
25
13 | 2.5 | 94
98
84
137 | 86
8.8
16
14 | 60
156
528
224 | .2
.3
.3 | 3.0
1.5
.8
1.2 | | 195
6374
941
6530 | .27
.51
1.28
.72 | .02 | 96
95
274
145 | 19
14
205
32 | 45
68
67
67 | 1.6
4.3
6.7
5.0 | 378
690
1,850
965 | 8.2
8.1
7.9
8.2 | | Feb. 1, 4-8, 10-14
Feb. 17-18
Feb. 15-16, 20
Mar. 28-30 | 0
0
0
a .07 | 2.3
3.3
2.1
6.3 | | 36
100
38
38 | 10
32
13
7.3 | 12
34
15
8 | 4
8 | 136
154
121
102 | 17
26
21
18 | 189
690
262
140 | .5
.4
.5 | 1.8
2.8
1.5
3.5 | | b468
1,270
b611
345 | .64
1.73
.83
.47 | .07 | 131
381
148
125 | 20
255
50
42 | 67
66
70
59 | 4.7
7.7
5.7
3.2 | 855
2,430
1,090
677 | 8.1
7.4
7.7
7.5 | | Apr. 1-3 | 0
0
a .20
0
.90
0
a2.42
a .23
0 | 7.0
6.4
6.0
3.9
6.4
6.7
6.5
7.4
4.5
6.6 | | 48

110
77
194
42
37
168
50
132
30
26 | 13
24
16
56
4.0
6.4
39
11
30
3.7
4.8 | 71
44
1,14
3
13
77
27
68
3 | 0
0
1
5
0
5
2
8 | 136
48
51
85
55
130
105
56
82
74
102 | 31

37
25
61
9.8
12
38
17
25
8.0 | 288
1,030
1,310
790
2,190
50
221
1,530
482
1,310
56
120 | .3

1.0
.7
.6
.1
.3
.5
.4
.6
.3 | 1.0
2.0
3.0

1.0
1.8
11
3.0
2.0
2.0
2.5 | | 635

2,230
1,400
3,670
208
472
2,590
886
2,220
b210
b339 | .86

3.03
1.90
4.99
.28
.64
3.52
1.20
3.02
.29 | 1.20

.51

5.79
1.38 | 174
420
373
258
714
121
119
580
170
453
90
84 | 62
380
331
188
670
15
33
534
103
392
6 | 68

81
79
78
36
71
74
78
77
48
70 | 5.8
 | 1,230
3,290
4,150
2,650
6,670
404
931
4,810
1,770
4,190
368
605 | 6.8
7.4
7.0
6.9
7.0
7.6
7.1
7.0
7.3
7.2
6.9
7.0 | | June 1, 4-5 June 6-20 June 21, 26 June 22-25 June 27-30, July 1-8 July 9-16 July 17-18 July 19-22 | a .23
0
1.35
20.6
a .02
a .24
0
a .02 | 7.8
7.2
13
5.5
5.0
5.8
9.0
8.4 | | 142
138
80
33
280
120
104
76 | 36
34
16
6.0
64
28
36 | 93
76
22
5
9
479
52
34 | 5
7
9
1
7.4 | 83
53
82
100
55
102
65
65 | 40
27
17
6.8
39
22
30
7.6 | 1,710
1,470
475
102
2,010
960
1,030
655 | .6
.5
.4
.3
.5
.5
.5 | 6.0
3.0
4.5
1.0

2.5
2.5
3.0 | | 2,910
2,470
873
263
3,330
1,680
1,760
1,140 | 3.96
3.36
1.19
.36
4.53
2.28
2.39
1.55 | 1.81

3.18
14.6
.18
1.09 | 502
484
266
107
962
414
408
230 | 434
441
198
25
916
331
354
177 | 80
77
65
54
67
71
74 | 18
15
6.1
2.5
13
10
11 | 5,230
4,570
1,720
513
6,090
3,170
3,340
2,210 | 6.9
7.6
7.6
6.8
7.1
7.3 | | Aug. 30-31, Sept. 1-2
Sept. 3 | a .22
20.0
0
a .46 | 8.8
6.0
9.8
7.2 | | 103
25
34
70 | 22
1.7
5.5
15 | 61
16
48 | 9.8
3 | 69
84
112
72 | 34
2.6
13
29 | 1,120
12
250
850 | .9
.1
.6 | 6.0
2.5
2.8
3.0 | | 1,940
101
5558
1,500 | 2.64
.14
.76
2.04 | 1.15
5.45

1.86 | 348
69
108
236 | 291
1
16
177 | 79
23
77
82 | 14
.5
6.8
14 | 3,620
182
1,020
2,810 | 7.0
7.7
7.3
7.2 | | Weighted average | | 6.0 | | 41 | 7.7 | 12 | .5 | 94 | 9.8 | 225 | 0.3 | 1.7 | | 463 | 0.63 | 0.45 | 134 | 57 | 67 | 4.7 | 890 | | a Includes days of less than 0.05 cubic feet per second discharge. Residue on evaporation at 180°C. c Represents 100 percent of flow for the water year. No flow on many days. ### 882. SALT CREEK NEAR NEWCASTLE. TEX. LOCATION. -- At gaging station at county bridge, 1.0 mile upstream from Oak Creek, 2.0 miles upstream from State Highway 24 bridge, 5.0 miles east of Newcastle, Young County, and about 8.5 miles upstream from Salt Creek Reservoir Dam. DRAINAGE AREA. -- 57.9 square miles. DRAINAGE AREA.--57.9 square miles. RECORDS AVAILABLE.--Chemical analyses: April 1958 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 2,170 ppm Apr. 14-16; minimum, 51 ppm July 18-19. Hardness: Maximum, 661 ppm Apr. 14-16; minimum, 22 ppm July 18-19. Specific conductance: Maximum daily, 3,940 micromhos Apr. 14; minimum daily, 72 micromhos July 19. EXTREMES, April 1958 to September 1959.--Dissolved solids: Maximum, 4,350 ppm June 21-30, July 1-5, 1958; minimum, 51 ppm July 18-19, 1959. Hardness: Maximum, 1,230 ppm June 21-30, July 1-5, 1958; minimum, 22 ppm July 18-19, 1959. Specific conductance: Maximum daily, 11,000 micromhos June 24, 1958; minimum daily, 72 micromhos July 19, 1959. REMARNS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean | a | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved sol | 0000996 | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |---|---|--|--------------|--|---|-------------------------------------|---------------------------------|--|--|--|--|--|------------|---|---|---|--|--|--|---|--|--| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25°C) | pН | | Oct. 1-11, 1958 Oct. 12 Oct. 13-31 Nov. 1-15 Nov. 15-30 | a0
2.20
a.01
a0
a0 | 5.0
6.6
3.8
3.2
2.5 | | 60
122
72
70
70 | 12
22
15
15
15 | 13
33
19
21
21 | 2
5
8 | 118
94
100
87
92 | 12
22
16
15
14 | 270
720
400
440
440 | 0.3
.3
.3
.4 | 1.5
3.0
1.0
.8 | | 554
1,270
752
b874
b884 | 0.75
1.73
1.02
1.19
1.20 | 7.54 | 199
396
241
236
236 | 102
319
159
164
160 | 60
65
64
67
67 | 4.1
7.3
5.5
6.2
6.2 | 1,100
2,470
1,480
1,580
1,570 | 7.9
8.0
7.9
7.6
7.5 | | Dec. 1-13 | a0
a0
a0
a0
a0
a0 | 2.1
5.1
3.7
7.8
5.7
3.5 | | 74
92
85
152
62
113 | 18
22
22
37
16
28 | 22
26
232
42
15
28 | 6
9.3
7
9 |
82
142
120
c190
88
168 | 17
21
20
42
14
17 | 468
538
495
890
340
615 | .5
.3
.4
.2
.3 | 2.0
1.0
1.0
3.5
.8
1.0 | | 847
1,020
927
1,650
641
1,150 | 1.15
1.39
1.26
2.24
.87
1.56 |

 | 258
320
302
531
220
397 | 192
204
204
375
148
260 | 65
64
62
64
61
61 | 6.1
6.5
5.8
8.1
4.7
6.3 | 1,680
1,980
1,820
3,090
1,290
2,220 | 7.6
7.7
8.0
8.6
8.2
8.0 | | Feb. 1-10 | a0
a0
a0
a0 | 7.4
5.6
4.0
6.3
6.4
4.1 | | 90
82
98
90
82
120 | 22
22
26
25
21
30 | 27
28
28
33
21
38 | 3
7
5
6 | 131
132
156
108
106
79 | 22
21
15
32
23
29 | 552
552
588
660
458
820 | .3
.4
.5
.3
.3 | 1.5
.5
.5
2.2
2.0
7.0 | | 1,030
1,030
1,100
1,200
861
1,430 | 1.40
1.40
1.50
1.63
1.17 | :: | 315
295
352
328
291
423 | 208
187
224
239
204
358 | 65
68
64
69
62
66 | 6.7
7.2
6.7
8.0
5.5
8.1 | 2,010
2,010
2,150
2,330
1,700
2,710 | 8.1
8.0
7.6
7.9
8.1
7.5 | | Apr. 1-10, 18 | a0
a0
a0
a0
a0
a0
a0
a37.7
3.38 | | | 37
52
194

54
96
123
18
48
64 | 6.8
10
43

9.7
22
27
3.0
8.4 | 9
56
2
11
29
39 | 4
6
4
1
7 | 63
100
56
38
100
81
59
62
100
139 | 17
22
95
6.8
28
51
65
8.0 | 133
194
1,240
36
222
600
800
38
218
320 | .2
.3
.5
.3
.5
.6
.5
.3
.4 | 4.5
3.0

5.2
2.5
3.0
27
3.2
5.7
1.5 | | 300
432
2,170

486
1,110
1,470
137
472
661 | .41
.59
2.95

.66
1.51
2.00
.19
.64 | 13.9
4.31 | 120
170
661
42
174
330
418
57
154
213 | 69
88
615
11
92
264
370
6
72
99 | 54
55
65
55
59
66
67
51
62
64 | 2.6
3.2
9.6
1.6
3.8
7.0
8.3
1.6
4.1 | 598
860
3,940
193
962
2,110
2,810
262
942
1,320 | 6.9
7.8
7.5
7.4
7.0
6.6
7.1
6.6
7.3 | | June 1-21 | 30.1
156
13.9
a1.78
2.90
a1.75
a1.94 | 14
14
11
13 | | 52
13
42
32
36
20
46
34
5.4 | 12
3.1
7.4
5.7
7.5
5.0
9.5
7.0
2.1
4.3 | 10
5
6
4
11 | 9
3
2
7
2 | 106
43
82
84
88
71
83
82
26
63 | 11
4.6
14
7.6
9.8
7.6
12
9.6
3.6 | 310
32
194
97
130
65
229
114
5.0 | .5
.3
.3
.2
.3
.2
.2
.2 | 2.0
1.5
4.0
2.2
1.8
3.8
2.8
1.8
3.2
2.8 | | 608
103
418
249
309
193
470
276
51
151 | .83
.14
.57
.34
.42
.26
.64
.38
.07 | 8.37
176
9.34
1.49
1.51
2.22
1.45
23.4
1.37 | 179
45
136
103
121
71
154
114
22
73 | 92
10
68
34
49
13
86
46
1 | 67
48
62
52
55
56
62
53
37
44 | 5.4
1.3
3.8
2.2
2.7
2.2
4.1
2.4
.5 | 1,220
190
797
482
578
336
889
520
72
277 | 6.9
6.6
7.4
7.2
7.5
7.4
7.5
7.3
7.0
6.7 | | Aug. 1-10 | a0
a0
a0
a34.3
a3.72 | 6.1 | | 33
37
48
7.5
14
29
38 | 6.3
6.8
8.3
3.5
3.4
5.0
6.8 | 5
7
1
2
4 | 1
3
8
3
1
1
6 | 111
108
103
38
53
90
126 | 12
17
27
6.2
7.4
7.6
10 | 65
88
138
14
28
70
91 | .4 .6 .6 .2 .2 .2 .2 .3 | 2.5
4.0
18
4.1
2.9
2.6
1.9 | | b244
b290
381
75
113
211
b291 | .33
.39
.52
.10
.15
.29
.40 | 10.5 | 108
120
154
33
49
93
123 | 17
32
70
2
6
19
20 | 45
49
52
46
48
49
50 | 1.7
2.1
2.7
1.0
1.3
1.8
2.2 | 408
495
707
126
197
394
517 | 7.6
7.3
7.9
7.4
7.6
7.4
7.7 | a Includes days of less than 0.05 cubic feet per second discharge. b Residue on evaporation at $180\,^{\circ}\text{C}_{\star}$ c Includes equivalent of 12 parts per million of carbonate (CO3). ### 886. BRAZOS RIVER AT POSSUM KINGDOM DAM NEAR GRAFORD, TEX. LOCATION. -- Immediately below Possum Kingdom Dam, 2.6 miles upstream from Loving Creek, 11.3 miles southwest of Graford, Palo Pinto County, and 20 miles upstream from gaging station DRAINAGE AREA, --22,550 square miles, approximately, of which 9,240 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: January 1942 to September 1959. Water temperatures: October 1949 to September 1955. EXTREMES, 1958-59.--Dissolved solids: Maximum, 1,370 ppm Sept. 1-30; minimum, 996 ppm Mar. 1-31. EXTREMES, 1958-59,--Dissolved solids: Maximum, 1,370 ppm Sept. 1-30; minimum, 296 ppm Mar. 1-31. Hardness: Maximum, 425 ppm Sept. 1-30; minimum, 228 ppm Dec. 1-31. Specific conductance: Maximum daily, 2,350 micromhos Sept. 29; minimum daily, 1,730 micromhos June 4. EXTREMES, 1942-59,--Dissolved solids: Maximum, 2,640 ppm Jan. 1-31, 1956; minimum, 331 ppm Apr. 26-30, May 1-10, 1957. Hardness: Maximum, 828 ppm Jan. 1-31, 1956; minimum, 135 ppm Apr. 26-30, May 1-10, 1957. Specific conductance: Maximum daily, 5,720 micromhos Jan. 7, 1956; minimum daily, 494 micromhos May 4, 1957. Water temperatures (1949-55): Maximum, 76°F Sept. 27-30, 1950; minimum, 45°F on several days in February 1951. WEMPARKS,--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for gaging station near Palo Pinto for water year October 1958 to September 1959 given in Water-Supply Paper 1632. No appreciable inflow between dam and gaging station except during periods of heavy local rains. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 1000 | ssolved so | | | iness
αCO ₁ | Per- | So-
dium | Specific
conduct- | | |------------------------------|-------------------------|-------------------------------|--------------|--------------|--------------|--------------|-------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|------------| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₁) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-31, 1958
Nov. 1-30 | 658
352 | 10
7.8 | | 122
110 | 20
19 | | 76
49 | 122
119 | 234
211 | 455
408 | | 1.5 | | 1,180
1,060 | 1.60 | 2,100
1,010 | 386
352 | 286
255 | 61
61 | 6.1
5.8 | 2,040
1,900 | 7.7
7.8 | | Dec. 1-31
Jan. 1-31, 1959 | 196
217 | 8.8 | | 102
103 | 18
19 | | 38 | 115
118 | 191
197 | 392
382 | | .8 | | 1,010 | 1.37
1.36 | 534
586 | 328
335 | 234
238 | 61
60 | 5.7
5.5 | 1,770
1,770 | 7.3
7.8 | | Feb. 1-28
Mar. 1-31 | | 7.6
10 | | 104
104 | 19
19 | | 32
29 | 118
114 | 198
195 | 382
382 | | .5
l.0 | | 1,000
996 | 1.36
1.35 | 209
183 | 338
338 | 241
244 | 60
60 | 5.5
5.4 | 1,780
1,780 | 7.9
7.7 | | Apr. 1-30
May 1-31 | | 8.8
7.8 | | 105
104 | 20
17 | 233 | 7.1 | 119
119 | 195
203 | 392
380 | | .8
1.0 | | 1,020
1,010 | 1.39 | 214
633 | 344
330 | 246
232 | 59
61 | 5.5
5.7 | 1,780
1,790 | 7.4
7.5 | | June 1-30
July 1-31 | | 8.6
9.0 | | 110
118 | 20
22 | | 40
177 | 124
126 | 215
256 | 392
438 | | .5 | | 1,050
1,180 | 1.43 | 3,010
6,630 | 356
385 | 255
282 | 59
61 | 5.5
6.1 | 1,840
1,990 | 7.4 | | Aug. 1-31
Sept. 1-30 | 225
208 | 12
12 | | 125
134 | 22
22 | | 192
12.7 | 128
125 | 264
294 | 465
515 | | 1.2 | | 1,240
1,370 | 1.69 | 753
769 | 402
425 | 298
322 | 61
63 | 6.3 | 2,120
2,310 | 7.2 | | Weighted average | 458 | 9.2 | | 115 | 21 | 2 | 164 | 123 | 235 | 425 | | 0.9 | | 1,130 | 1.54 | 1,400 | 374 | 272 | 61 | 5.9 | 1,950 | | ### 926. BRAZOS RIVER AT WHITNEY DAM NEAR WHITNEY, TEX. LOCATION. -- Immediately below Whitney Dam, 4.0 miles upstream from Iron Creek, 3.4 miles upstream from gaging station near Whitney, and 7.4 miles southwest of Whitney, LOCATION.--Immediately below whitney Dam, 4.0 miles upstream from Iron Creek, 3.4 miles upstream from gaging: Mill County. DRAINAGE AREA.--26,170 square miles, approximately, of which 9,240 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: October 1947 to May 1948, October 1948 to September 1959. Water temperatures: October 1947 to May 1948, October 1948 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 947 ppm Feb. 1-28; minimum, 845 ppm Aug. 1-31. Hardness: Maximum, 328 ppm Apr. 1-30; minimum, 283 ppm Aug. 1-31. Specific conductance: Maximum daily, 1,690 micromhos May 9; minimum daily, 1,290 micromhos July 26. Water temperatures: Maximum, 88°F June 17; minimum, 39°F Jan. 4, 21. EVYPDYMES 1947-59.--Dissolved dailds: Maximum. 1.500 npm Oct. 1-10. 1948; minimum, 183 ppm June 11-20,
1952. EXTREMES, 1947-59.--Dissolved solids: Maximum, 1,560 ppm Oct. 1-10, 1948; minimum, 183 ppm June 11-20, 1952. Hardness: Maximum, 542 ppm Oct. 1-10, 1948; minimum, 96 ppm June 11-20, 1952. Specific conductance: Maximum daily, 2,660 micromhos Oct. 1, 1948; minimum daily, 203 micromhos May 23, 1952. Water temperatures: Maximum, 92°F July 21, 28-29, 1957; minimum, freezing point Jan 28-29, 1948. REMARKS .-- Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. No appreciable inflow between dam and gaging station except during periods of heavy local rains. | - | Mean
dis- | Silica. | Iron | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 1,00000 | ssolved so | | | dness
aCO ₃ | Per- | So- | Specific
conduct- | | |------------------------------|-----------------|---------------------|------|--------------|---------------------|--------------|---------------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|----------------------|------------| | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | mhos at
25° C) | pН | | Oct. 1-31, 1958
Nov. 1-30 | 536
571 | 9.6
9.8 | | 100
94 | 16
16 | 19 | | 126
131 | 174
167 | 318
318 | | 1.2 | | 885
930 | 1.20 | 1,280
1,430 | 316
300 | 212
193 | 57
59 | 4.7
5.0 | 1,550 | 7.8
8.0 | | Dec. 1-31
Jan. 1-31, 1959 | 553
530 | 11 | | 94
96 | 16
18 | 191 | 5.8 | 136
133 | 166
173 | 322
322 | 0.3 | .2 | | 925
913 | 1.26 | 1,380
1,310 | 300
314 | 189
204 | 59
56 | 5.1
4.7 | 1,570
1,560 | 8.2
8.2 | | Teb. 1-28 | 596
612 | 11 | | 93
99 | 18
18 | 19 | | 114
134 | 176
178 | 322
325 | == | .5 | | 947
a896 | 1.29 | 1,520
1,480 | 306
321 | 212
211 | 58
57 | 4.9
4.8 | 1,560
1,570 | 7.6
7.8 | | Apr. 1-30
day 1-31 | 614
633 | 8.4
7.4 | | 100
98 | 19
19 | 192 | 5.6 | 140
141 | 185
174 | 318
310 | .3 | .5
2.0 | | a898
946 | 1.22 | 1,490
1,620 | 328
322 | 213
207 | 56
56 | 4.6
- 4.6 | 1,600
1,560 | 7.9 | | June 1-30
July 1-31 | | 11
11 | | 94
86 | 19
17 | 15 | | 140
134 | 170
152 | 308
290 | | 1.0 | | 909
850 | 1.24 | 1,510
3,570 | 312
284 | 198
174 | 57
58 | 4.7
4.7 | 1,500
1,400 | 7.2
7.2 | | Aug. 1-31
Sept. 1-30 | 711
625 | 11
11 | | 87
89 | 16
17 | 13 | 77
92 | 137
132 | 138
160 | 290
308 | | 2.2 | | 845
863 | 1.15 | 1,620
1,460 | 283
292 | 170
184 | 58
59 | 4.6
4.9 | 1,400
1,450 | 7.6
7.5 | | Weighted average | 681 | 10 | | 93 | 17 | 19 | 91 | 134 | 165 | 309 | | 1.0 | | 893 | 1.21 | 1,640 | 302 | 192 | 58 | 4.8 | 1,500 | | a Calculated from determined constituents. ### 1110. NAVASOTA RIVER NEAR BRYAN, TEX. LOCATION. -- At gaging station at bridge on U. S. Highway 190, 2.5 miles upstream from Shepherd Creek, and 17 miles northeast of Bryan, Brazos County. LOCATION: --At gaging station at bridge on U. S. Highway 190, 2.5 miles upstream from Shepherd Creek, and 17 miles northeast of Bryan, Brazos County. DRAINAGE AREA. --1,439 square miles. RECORDS AVAILABLE. --Chemical analyses: October 1958 to September 1959. Water temperatures: October 1958 to September 1959. Water temperatures: October 1958 to September 1959. Hardness: Maximum, 226 ppm Sept. 20-25; minimum, 72 ppm Feb. 15. Hardness: Maximum, 226 ppm Sept. 20-25; minimum, 27 ppm Feb. 15. Specific conductance: Maximum daily, 2,370 micromhos Sept. 22; minimum daily, 114 micromhos Feb. 15. Water temperatures: Maximum, 39 °F Aug. 4; minimum, 38°F Jan. 4-5. REMARKS. --Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paner 1632. Paper 1632. | Chemical | analy | ses, | in | parts | per | million, | water | year | October | 1958 | to | September | 1959 | | |----------|-------|------|----|-------|-----|----------|-------|------|---------|------|----|-----------|------|--| | | | | | | | | | | | | | | | | | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Во- | | solved sol | | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |--|--|---|--------------|--|---|--|---------------------|--|--|---|------------------|---|------------|--|---|---|--|--|--|--|---|--| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | pН | | Oct. 1-10, 1958 Oct. 11-20 Oct. 21-31 Nov. 1-16 Nov. 17 Nov. 18-30 Dec. 1-7 Dec. 8-17 Dec. 18-31 | 311
91.1
428
53.2
459
85.3
217
95.0
62.2 | 16
18
12
16
8.8
17
18
17 | | 22
30
16
29
17
27
26
45
41 | 4.5
6.4
3.5
6.7
3.1
7.2
6.5
9.5
7.8 | 73
68
29
52
20
41
40
78 | | 66
92
52
78
32
57
52
109
102 | 20
29
19
39
33
46
48
51
47 | 110
101
38
77
26
65
61
126
81 | 0.1 | 1.5
1.5
.5
.5
1.0
.5
.5 | | a299
a319
144
a282
125
232
226
a416
a315 | 0.41
.43
.20
.38
.17
.32
.31
.57 | 251
78.5
166
40.5
155
53.4
132
107
52.9 | 73
101
54
100
55
97
92
152
134 | 19
26
12
36
29
50
49
62 | 68
59
53
53
44
48
49
53 | 3.7
2.9
1.7
2.3
1.2
1.8
1.8
2.7 | 499
531
258
471
188
410
388
694
523 | 7.0
7.2
6.9
7.4
7.0
7.2
7.1
7.7 | | Jan. 1-10, 1959 | 59.6
40.5
95.1
2,241
3,400
3,825 | 18
20
20
18
9.6
8.2
13 | | 28
34
38
40
16
8.4
22
38 | 8.2
9.8
11
12
4.1
1.5
5.2
9.0 | 43 56 67 73 36 13 81 181 | | 57
58
65
62
35
25
50
74 | 59
69
79
85
29
14
20
37 | 68
90
107
120
53
14
134
302 | .4

 | .5
.2
.5
1.0
1.2
1.0 | | 258
308
354
378
166
72
301
619 | . 35
. 42
. 48
. 51
. 23
. 10
. 41 | 111
49.6
38.7
97.1
1,000
661
3,110
1,900 | 104
125
140
150
57
27
76
132 | 57
78
86
98
28
6
36
72 | 46
49
51
52
58
52
70
75 | 1.8
2.2
2.5
2.6
2.1
1.1
4.0
6.9 | 441
529
616
677
303
114
570
1,200 | 7.7
7.7
7.8
7.8
7.4
7.5
7.8
7.6 | | Mar. 1-7, 10-l1 | 258
61.0
65.6
2,524
3,212 | 17
13
15
16
8.4
8.8 | | 46
34
46
49
14
21
28 | 12
9.5
13
15
3.6
4.6
5.7 | 176
93
117
106
28 | 4.6 | 79
71
85
78
33
44
76 | 67
54
74
88
22
26
32 | 282
150
195
186
42
88
99 | .2 | 2.2
1.2
.8
.2
1.2
.5 | | 635
390
503
503
135
224
281 | .86
.53
.68
.68
.18
.30 | 360
272
82.8
89.1
920
1,940
724 | 164
124
168
184
50
71
93 | 100
66
99
120
23
35
31 | 69
62
60
55
55
62
61 | 5.8
3.6
3.9
3.4
1.7
2.8
3.0 | 1,190
718
928
908
253
422
518 | 7.7
7.6
7.5
7.5
6.9
7.0
7.3 | | May 1-8 | 791
3,548
2,201
592
757
122 | 15
12
8.6
8.8
16
14
17 | | 34
23
12
13
27
22
37
16 | 9.0
5.9
3.2
3.6
6.0
4.3
8.8
3.0 | 72
51
22
24
53
36
59 | 7 | 83
65
41
43
79
69
98
47 | 49
27
14
16
28
22
44
16 | 113
79
30
33
85
50
91
50 | | 1.5
1.0
1.0
1.0
2.0
1.2
2.0 | |
334
231
111
120
284
184
a336
155 | .45
.31
.15
.16
.39
.25
.46 | 274
493
1,060
713
454
376
111
1,470 | 122
82
43
47
92
73
128
52 | 54
28
10
12
27
16
48
14 | 56
58
53
52
57
52
50
59 | 2.9
2.5
1.5
1.5
2.6
1.8
2.3
2.1 | 617
439
206
228
470
335
552
285 | 7.8
6.9
6.6
7.1
7.4
7.5
7.4
6.7 | | July 1-7 | 45.0
88.0
240
198 | 17
18
15
13
16
16 | | 22
40
46
52
46
46
36 | 3.9
8.7
9.6
12
7.5
9.5
8.8 | 39
62
77
124
188
206 | 3
7
4
8 | 81
99
114
120
99
107
103 | 15
44
45
48
27
30
32 | 51
102
128
212
315
342
211 | .3
.4

 | 1.2
1.0
.8
.2
2.0
1.8
1.8 | | 189
a346
a406
520
a712
a766
a518 | .26
.47
.55
.71
.97
1.04 | 852
42.0
96.5
337
381
32.5
17.5 | 71
136
154
179
146
154
126 | 5
55
61
80
65
66
42 | 54
50
52
60
74
74
70 | 2.0
2.3
2.7
4.0
6.8
7.2
5.2 | 323
576
680
974
1,220
1,310
905 | 7.1
7.1
7.0
7.0
7.4
7.1
7.1 | | Sept. 1-10 | - 22.4
- 17.8 | 15
13 | | 36
30
66
28 | 9.2
6.6
15
5.7 | 106
86
26:
10: |)
3
L | 95
67
87
67 | 42
27
44
25 | 167
137
480
165 | == | 0.8
.8
3.8 | | a457
329
928
372 | .62
.45
1.26
.51 | 53.6
19.9
44.6
40.6 | 128
102
226
94 | 50
47
154
38 | 64
63
72
70 | 4.1
3.4
7.6
4.5 | 786
626
1,760
709 | 6.9
7.3
7.3
7.1 | | Weighted average | - 529 | 12 | | 21 | 4.9 | 5 | 2 | 5.5 | 2.5 | 80 | | 1.1 | | 226 | 0.31 | 323 | 73 | 28 | 61 | 2.6 | 414 | | a Residue on evaporation at 180°C. ### 1140. BRAZOS RIVER AT RICHMOND TEX LOCATION.--At gaging station at bridge on U. S. Highway 59 in Richmond, Fort Bend County, 925 feet downstream from Texas and New Orleans Railroad bridge, and at mile 93. DRAINAGE AREA.--44,020 square miles, approximately, of which 9,240 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: October 1945 to September 1959. Water temperatures: November 1950 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 718 ppm Apr. 1-7; minimum, 171 ppm Apr. 11-22. Hardness: Maximum, 288 ppm Apr. 1-7; minimum, 100 ppm Oct. 1-9. Specific conductance: Maximum daily, 1,230 micromhos Dec. 25, Apr. 4; minimum daily, 235 micromhos Oct. 1, Apr. 20. Water temperatures: Maximum, 86° on several days during summer months; minimum, 39°F Jan. 4. EXTREMES, 1945-59.--Dissolved solids: Maximum, 1,400 ppm Sept. 1-10, 1951; minimum, 133 ppm Aug. 27-31, 1947. Hardness: Maximum, 446 ppm Sept. 1-10, 1948; minimum, 74 ppm Jan. 13-14, 18-20, 1950. Specific conductance: Maximum daily, 2,540 micromhos Sept. 4, 1951; minimum, and aliy, 187 micromhos Aug. 31, 1947. Water temperatures (1950-59): Maximum, 91°F Aug. 5, 1951; minimum, 195°F 19 | | | | | | Chem | ical anai | vene (| n narte n | er milli | n uatem | waar O | tobar 1 | 958 to | September | 1050 | | | | | | | | |---|---|-------------------------------|------|--|---|--|---|---|---|--|---|--|------------|---|--|--|---|---|--|---|---|---| | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo | Ni- | Bo- | Dia | solved sol | | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | Oct. 1-9, 1958 Oct. 10-14, 21-25 Oct. 15-20, 26-31 Nov. 1-10 Nov. 11-20 Nov. 21-30 | 7,501
2,593
2,799
2,365
2,181
2,018 | 14
13
14
10 | | 33
51
73
59
64
62 | 4.2
8.4
14
10
13 | 27
48
98
61
73
72 | 3.9
4.8
5.0
4.8
4.6
5.3 | 101
145
160
158
168
158 | 25
47
96
66
85
72 | 40
73
160
90
110
114 | 1 1 1 1 | 1.5
2.0
.5
1.8
1.5 | | a201
330
563
402
464
454 | 0.27
.45
.77
.55
.63 | 4,070
2,310
4,250
2,570
2,730
2,470 | 100
162
240
188
213
200 | 17
42
108
58
76
70 | 36
38
46
41
42
43 | 1.2
1.6
2.7
1.9
2.2
2.2 | 342
556
934
671
782
754 | 7.8
7.4
7.6
8.0
8.0
7.9 | | Dec. 1-10 Dec. 11-20 Dec. 21-31 Jan. 1-10, 1959 Jan. 21-31 Jan. 21-31 | 1,870
1,692
1,544
1,635
1,437
1,185 | 10
7.0
11
8.8 | | 80
78
87
81
77
81 | 16
15
16
16
16 | 106
95
117
98
104
107 | 5.0
4.9
4.9
4.8
4.7
5.9 | 185
191
196
215
195
214 | 106
100
117
99
107
111 | 175
150
192
149
158
166 | 0.3 | .5
1.5
1.0
1.5
1.5 | | 615
578
679
605
623
636 | .84
.79
.92
.82
.85 | 3,110
2,640
2,830
2,670
2,420
2,030 | 266
256
283
268
258
276 | 114
100
122
92
98
100 | 46
44
47
44
46
45 | 2.8
2.6
3.0
2.6
2.8
2.8 | 1,050
982
1,160
988
1,000
1,050 | 7.7
7.7
7.6
8.1
8.0
8.0 | | Feb. 1-10 | 2,236
7,725
7,893
3,235
2,087
1,298 | 12
12
14
12 | | 69
50
37
63
72
79 | 1.4
8.2
4.7
10
13
16 | 104
53
29
104
102
108 | 4.8
4.5
4.9
5.9
5.3
4.9 | 158
127
99
131
158
182 | 106
61
42
76
99
108 | 154
82
40
170
158
168 | ======================================= | 1.2
2.0
2.8
2.2
2.2 | | 546
350
a221
a509
a542
641 | .74
.48
.30
.69
.74 | 3,300
7,300
4,710
4,450
3,050
2,250 | 230
158
112
198
233
263 | 100
54
31
90
104
114 | 49
41
35
52
48
47 | 3.0
1.8
1.2
3.2
2.9 | 941
594
379
919
965
1,030 | 8.1
8.0
7.8
7.9
8.0
7.9 | | Apr. 1-7 | 1,320
6,350
26,950
10,530
3,238
10,780
11,830 | 12
11
13
12
9.4 | | 84
62
35
36
48
45 | 19
11
4.6
5.2
8.4
6.4
4.8 | 124
69
16
29
53
43 | 5.1
5.1
4.0
4.7
4.8
4.3
4.0 | 188
142
108
97
129
118
111 | 125
74
23
35
56
44
29 | 198
116
22
47
78
67
33 | .3

 | .5
2.5
2.0
1.8
1.0
2.0
2.5 | | 718
a422
a171
a220
a324
a279
a200 | .98
.57
.23
.30
.44
.38 | 2,560
7,240
12,440
6,250
2,830
8,120
6,390 | 288
200
106
112
154
139
112 | 134
83
18
32
49
42
21 | 48
42
24
35
42
39
31 | 3.2
2.1
.7
1.2
1.9
1.6
1.0 | 1,160
752
298
395
585
514
359 | 8.1
8.2
7.6
7.2
7.3
7.4
7.9 | | June 1-7, 13-16 June 8-12, 17-20 June 21-28 June 29-30, July 1-10 July 11-16 July 17-31 | 6,208
6,191
2,730
7,395
3,470
2,643 | 16
15
15
15 | | 36
50
63
45
46
72 | 4.4
7.2
11
7.1
8.7 | 24
44
67
35
54
105 | 4.0
4.4
4.6
4.3
5.8
5.2 | 110
130
166
127
129
162 | 32
50
68
38
45
99 | 27
65
99
52
84
166 |

 | 2.8
2.0
1.0
3.0
2.0 | | 217
322
436
276
336
574 | .30
.44
.59
.38
.46 | 3,640
5,380
3,210
5,510
3,150
4,100 | 108
154
202
142
151
241 | 18
48
66
38
46
108 | 32
37
41
34
43
48 | 1.0
1.5
2.1
1.3
1.9
2.9 | 341
532
716
468
566
963 | 7.5
7.2
7.4
7.3
7.3
7.3 | | Aug. 1-3, 6-10 | 3,806
4,905
1,431
1,419
1,683
1,310 | 24
15
14
15 | | 66
48
78
70
66
62
69 | 12
7.6
14
14
15
13
16 | 91
41
117
91
110
78
89 | 5.4
4.1
5.3
5.0
4.8
4.4
4.6 | 155
147
181
189
175
173
208 | 81
38
93
80
89
68
77 | 151
62
196
146
162
122
127 |

 | .5
1.5
.5
.2
.8
.8 | | 497
a298
628
524
a549
450
500 | .68
.41
.85
.71
.75
.61 | 5,110
3,950
2,430
2,010
2,490
1,590
1,260 | 214
152
252
232
226
208
238 | 87
31
104
77
82
66
68 | 47
36
50
45
51
44
44 | 2.7
1.4
3.2
2.6
3.2
2.3
2.5 |
859
497
L,080
896
939
775
850 | 7.6
7.9
7.4
7.3
7.6
7.2
7.3 | | Weighted average | 4,450 | 12 | | 49 | 8.0 | 49 | 4.5 | 130 | 51 | 74 | | 1.9 | | 323 | 0.44 | 3,880 | 156 | 49 | 40 | 1.7 | 553 | | a Calculated from determined constituents. BRAZOS RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS | Date of collection Catago (SiO.) Jan. 26, 1959 a0.07 Jan. 29, 1959 0.25 Jan. 29, 1959 0.25 Jan. 29, 1959 0.10 | (Fe) | (Ca) | | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | ž | Bo- | Dissol
(cal | Dissolved solids
(calculated) | | Hardness
as CaCO, | ž oʻ | Per- | -So- | Specific
conduct- | | |---|------|------|--------------|--------------|---------------------|--|---------------|---------------------------------|-------------|---------|----------------|----------------|----------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|--------------------------------------|-----| | ल ल | | | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO,) | fate
(SO,) | ride
(CI) | ride
(F) | (NO,) | (B) | Parts per mil- | Tons T
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | 8 | | | | DOUB | E MOUNTA | DOUBLE MOUNTAIN FORK BRAZOS RIVER AT US HIGHMAY 84 | BRAZOS R | IVER AT U | S HIGHWA | Y 84 AT | AT JUSTICEBURG | BURG | | | | | | | | | | ru a | | | | 1,790 | 04 | 232 | 346 | 2,780 | | | | | | | 580 | 390 | | | 956'8 | 8.2 | | | | | | 00 | BLE MOUN | DOUBLE MOUNTAIN FORK BRAZOS RIVER 10 MILES SOUTH OF CLAIREMONT | K BRAZOS | RIVER 10 | MILES S | OUTH OF | CLAIREN | UNT | | | | | | | | | | | | | | 7 | 453 | 130 | 1,470 | 445 | | | | | | _ | 1,280 | 1,170 | | | 3,730 | 00 | | | | | | | | ROUG | H CREEK | ROUGH CREEK AT MOUTH NEAR ROTAN | NEAR ROT | AN | | | | | | | | | | | | 29, 1959 | | | | 31 | 6.3 | 95 | 935 | 36 | | | | | | | 1,000 | 922 | 9 | | 1,730 | 4.4 | | 29, 1959 | | | | DOG | SLE MOUNT | DOUBLE MOUNTAIN FORK BRAZOS RIVER AT STATE HIGHWAY 70 NEAR ROTAN | BRAZOS | RIVER AT | STATE HI | GHWAY 7 | D NEAR B | OTAN | | | | | | | | | | 29, 1959 | | 764 | 116 | 060'5 | 06 | 97 | 2,080 | 007'9 | | | | | | | 2,380 | 2,300 | | | 20,100 | 8.1 | | 29, 1959 | | | | BOOR | E MOUNTA | DOUBLE MOUNTAIN FORK BRAZOS RIVER AT US HIGHMAY 380 NEAR OLD GLORY | BRAZOS R | IVER AT U | S HIGHWA | Y 380 M | EAR OLD | GLORY | | | | | | | | | | | | | | 5 | 529 | 160 | 1,720 | 595 | | | | | | | 1,610 | 1,480 | | | 027,2 | 8.0 | | | | | | noa | SLE MOUNT | DOUBLE MOUNTAIN FORK BRAZOS RIVER AT STATE HIGHMAY 24 NEAR RULE | BRAZOS | RIVER AT | STATE HI | GHWAY 2 | 4 NEAR P | ULE | | | | | | | | | | | | | | 3 | 396 | 126 | 1,260 | 200 | | | | | | | 1,260 | 1,160 | | | 3,640 | | | | | | | 8 | JBLE MOUT | DOUBLE MOUNTAIN FORK BRAZOS RIVER ABOVE SALT FORK BRAZOS RIVER | K BRAZOS | RIVER AF | OVE SALT | FORK B | RAZOS RI | VER | | | | | | | | | | | | 006 | 185 | 5,300 | 00 | 133 | 2,180 | 8,610 | | | | | | | 3,010 | 2,900 | | | 25,300 | 8.1 | | | | | | | | 808. | WHITE | RIVER NEAR CROSBYTON | AR CROSBY | TON | | | | | | | | | | | | June 18, 1959 1.25 | | | | 57 | 11 | | 54 | 22 | | | | | | | | | | | 613 | | | | | | | | æ | 809. WHITE | RIVER | BELOW FALLS NEAR CROSBYTON | LS NEAR | CROSBYT | NO | | | | | | | | | | | June 18, 1959 1.91 | | | | 19 | 11 | | 51 | 22 | | | | | | | | | | | 370 | | | | | | | | | RED | MUD CRE | RED MUD CREEK NEAR CLAIREMONT | LAIREMON | E | | | | | | | | | | | | Aug. 21, 1959 0 | | | | 56 | 7.1 | 42 | 451 | 30 | | | | | | | 518 | 454 | 10 | | 1,050 | 1.5 | MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS -- Continued | Date of collection Circle Date of collection Circle Solidar Colidar Solidar Sol | , in parts per million, water year October 1938 | | מסליבוויספי דיייים ווידיווים מיייים ווידיווים מיייים ווידיים ווידיים ווידיים ווידיים ווידיים ווידיים ווידיים ו | - | | - | | |--|--|-------------------------|--|--|--------|------------------------------|-----| | Cota Silica Iron Cium Iron Cium Cota Cium Cota | Sul- | ž | Dissolved solids
(calculated) | Hardness
as CcCO, | Per- | Specific
conduct- | | | SALT CREEK AT ROAI - a0.15 | fate
(SO _c) | (NO ₃) (B) | Parts Tons Tons per per per mil. acre- day | Cal- Non-
cium, carbon-
magne- ate | | (micro-
mhos at
25° C) | Hd | | 0 | T ROAD CROSSING ABOUT 5 MILES NORTHWEST OF | NORTHWEST OF CLAIREMONT | MONT | | | | | | SALT FORK B 161 162 163 164 171 167 167 168 171 171 171 171 | - | | | 5,380 5,300
6,270 6,200 | 96 371 | 143,000 | 7.8 | | 1.7 642 177 1.7 642 177 1.7 5ALT FORK BRACOS 1.0 8.210 177 1.0 8.210 177 0.8 8.210 0 177 0.8 8.210 0 177 0.8 8.210 0 177 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 0.8 8.210 0 175 | SALT FORK BRAZOS RIVER AT FM ROAD 948 NEAR CLAIREMONT | 948 NEAR CLAIREMONT | | | | | | | SALT FORK BRAZOS 1.7 | | | | 2,280 2,140 | | 14,800 | 8.0 | | SALT FORK BRAZOS F | DUCK CREEK AT MOUTH NEAR JAYTON | LJAYTON | | | | | | | SALT FORK BRAZOS 1.7 542 174 SALT FORK BRAZOS 0.8 5,930 176 SALT FORK BRAZOS 0.8 5,930 176 SALT FORK BRAZOS 0.8 5,930 176 SALT FORK BRAZOS FOR | | | | 1,620 1,480 | | 3,560 | 8.1 | | SALT FORK BRACOS 1.7 3.410 200 SALT FORK BRACOS | SALT FORK BRAZOS RIVER 5 MILES WEST OF | WEST OF JAYTON | | | | | | | SALT FORK BRA 1.7 SALT FORK BRAZOS | - | | | 1,570 1,430 | | 5,050 | 8.1 | | 1.0 SALT FORK BRAZOS SALT FORK BRAZOS 8,210 17 SALT FORK B SALT FORK B 4,320 176 8,100 13,100 150.5. \$ 810.5. \$ | FORK BRAZOS RIVER AT US HIGHWAY 380 WEST | 380 WEST OF JAYTON | | | | | | | SALT FORK BRAZOS 1.0 1.0 8.210 1.1 SALT FORK BI SALT FORK BI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. | - | | | 2,220 2,050 | | 17,000 | | | 1.0 8,210 177 | AZOS RIVER AT KENT-STONEMALL COUNTY LINE NEAR JAYTON | COUNTY LINE NEAR JA | YTON | | | | | | SALT FORK BRAZ
0.8 5,930 176
SALT FORK F
4,320 154
810.5. SHG | - | | | 2,750 2,600 | | 34,900 | 8.0 | | 0.8 SALT FORK E SALT FORK E (4,320 176 134 100 13,100
13,100 13 | DRK BRAZOS RIVER AT US HIGHWAY | Y 380 NEAR SWENSON | | | | | | | SALT FORK F 4,320 154 810.5. SHC 0 13,100 811. CROTON CREEK | \vdash | | | 2,950 2,810 | | 27,200 | 8.0 | | 0 134.00 0154 810.5. SHG 0 13,100 811. CROTON CREEK | SALT FORK BRAZOS RIVER \(\frac{1}{2} \) MILE ABOVE CROTON CREEK | OVE CROTON CREEK | | | | | | | 810.5. SH | - | | | 2,970 2,840 | | 21,400 | 7.9 | | 0 13,100 18,11. CROTON CREEK | S. SHORT CROTON CREEK AT MOUTH NEAR JAYTON | UTH NEAR JAYTON | | | | | | | CROTON CREEK | 3,780 20,400 | | | | | 76,400 | | | | I CREEK BELOW MOUTH OF SHORT CROTON CREEK NEAR JAYTON | CROTON CREEK NEAR JA | YTON | | | | | | Aug. 15, 1959 0 2,820 3,890 | 2,820 3,890 | | | 3,030 | 65 | 14,200 | | | | | | | | | | | BRAZOS RIVER BASIN--Continued # MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS--Continued | | | | | Chi | emical a | Chemical analyses, in parts per | in parts | per mil. | tion, wat | er year C | Crober 1 | 958 to | Septemb | million, water year October 1958 to September 1959 Continued | ontinued | | | | | | | | |--------------------|-------------------------|-------------------------------|--------------|--------------|--------------|---------------------------------|---------------------|-------------------------------|-------------------|---|--------------------------------|----------------|------------|--|----------------------------------|--------------------|---------------------------------|-------------------|-------------------|--------------------------|---------------------------------------|-------| | | | | | Cal. | Mag- | | Po- | Bicar- | Sul- | Chlo- | Fluo- | ż | Bo- | Dissolv
(calcu | Dissolved solids
(calculated) | | Hardness
as CaCO, | | Per- | Se- | Specific
conduct- | | | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | | | ron
(B) | Parts T per nuil- a | Tons per acre- | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon- d | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25 ° C) | Hq | | | | | | | | | SAL | T CROTON | CREEK AT | SALT CROTON CREEK AT FALLS NEAR ASPERMONT | AR ASPER | TNOM | | | | | | | | | | | | Mar. 11, 1959 | 0.69 | | | | | 92,100
10,400
5,930 | | | 3,410 1,990 1,580 | 147,000
16,300
9,500 | | | | | | | 9,520
2,730
2,040 | | 9.5
8.9
8.6 | | 150,000
38,700
25,800 | | | | | | | | | | STI | STINKING CREEK AT | EK AT US | US HIGHWAY | 83 | NEAR ASPERMONT | IN | | | | | | | | | | | Jan. 29, 1959 | a0.20 | | | | | 1,940 | 0 | 257 | 2,570 | 3,590 | | | | | | | 3,720 | 3,510 | | | 13,200 | 00 | | | | | | | BB | BRAZOS RIVER | | JUST BELOW CONFLUENCE | TUENCE | OF DOUBLE | DOUBLE MOUNTAIN AND SALT FORKS | AND SA | LT FORK | S NEAR RULE | 5-1 | | | | | | | | | Jan. 29, 1959 | 1.8 | | | | | 6,500 | 0 | 118 | 2,490 | 10,500 | | | | | | | 3,360 | 3,260 | | | 29,800 | 1.00 | | | | | | | | NORTH CROTON | OTON CRE | CREEK AT COL | JNTY ROAI | COUNTY ROAD CROSSING | 3 11 MILES | S SOUTHWEST | WEST OF | GUTHRIE | | | | | | | | | | Mar. 17, 1959 | a0.04 | | | 1,390 | 312 | 0000,6 | 0 | 109 | 4,170 | 14,100 | | | | | | - | 4,750 | 099'5 | 80 | 57 | 38,800 | 70. | | | | | | | | | NC | NORTH CROTON CREEK | ON CREEK | AT MOUTH | NEAR KNOX | OX CITY | | | | | | | | | | | | Aug. 18, 1959 | 1.08 | | | | | 30 | 9.9 | 56 | 462 | 07 | | | | | | | 767 | 877 | 11 | | 0.0.1 | 7.1 | | | | | | | | | | BRAZOS | RIVER BEI | RIVER BELOW NORTH CROTON CREEK | CROTON C | REEK | | | | | | | | | | | | Jan. 29, 1959 | 2.1 | | | | | 4,520 | 0 | 111 | 2,040 | 7,280 | | | | | | | 2,660 | 2,570 | | | 22,100 | 21.00 | | | | | | | | | | MUSTANG | CREEK AT | MISTANG CREEK AT MOUTH NEAR KNOX CITY | EAR KNOX | CITY | | | | | | | | | | | | Aug. 18, 1959 | 0 | | | | | 1,580 | | 124 | 3,440 | 2,280 | | | | | | | 3,430 | 3,330 | 50 | | 10,700 | 7.7 | | | | | | | | | BRA2 | 30S RIVER | AT STATI | BRAZOS RIVER AT STATE HIGHWAY 283 NEAR KNOX CITY | 283 NEAF | KNOX C | ITY | | | | | | | | | | | Jan. 29, 1959 | 2.1 | | | | | 3,210 | 0 | 104 | 1,970 | 5,080 | | | | | | | 2,330 | 2,240 | | | 16,500 | 8.2 | | | | | | | | | | BRAZOS R | IVER AT 8 | BRAZOS RIVER AT FM ROAD 209 NEAR GRAHAM | D9 NEAR C | RAHAM | | | | | | | | | | | | Jan. 30, 1959 | 7.6 | | | | | 1,290 | o. | 192 | 1,040 | 1,970 | | | | | | | 1,220 | 090'1 | | | 7,610 | 0.8 | | | | | | | | | CLEAR | FORK BRA | ZOS RIVE | CLEAR FORK BRAZOS RIVER AT STATE HIGHWAY 70 NEAR ROBY | E HICHWAN | 70 NEA | R ROBY | | | | | | | | | | | Jan. 30, 1959 | 9.0 | | | 079 | 126 | 1,770 | 0 | 242 | 2,210 | 2,450 | | | | | | | 2,120 | 076,1 | | | 10,300 | 1.00 | | a Field estimate. | BRAZOS RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS--Continued | 1959Continued | | |----------------|---| | September | | | to | | | 1958 | | | October | | | year | | | water | | | s per million, | | | rrts | | | d u | | | ٠, | ŀ | | nalyses | | | Chemical 8 | | | | i | | | Cal- | Mag- | જ | Po- | Bicar- | Sul- | Chlo- | Fluo- | ź | Bo- | : 3 | Dissolved solids
(calculated) | s G | as CaCO, | 8,0 | Per- | So- | Specific
conduct- | | |--------------------|-------------------------|-------------------------------|------|--------------|--------------|--------------|---------------------|-------------------------------|---------------|--|-------------|----------------|----------|--|----------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|-----| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | (B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | | | | | | | | CLEA | R FORK BI | MAZOS RIV | CLEAR FORK BRAZOS RIVER AT FM | ROAD 57 | AT SYLVESTER | VESTER | | | | | | | | | | | Jan. 30, 1959 | 2.0 | | | | | 1,520 | 20 | 180 | 2,350 | 2,010 | | | | | | | 2,120 | 0.6,1 | | | 9,220 | 8.0 | | | | | | | | | CLEAR | FORK BRAZ | OS RIVER | CLEAR FORK BRAZOS RIVER AT FM ROAD 126 SOUTH OF | AD 126 | SOUTH OF | F HAMLIN | | | | | | | | | | | Jan. 30, 1959 | 2.8 | | | 210 | 150 | 76 | 156 | 200 | 1,930 | 1,250 | | | | | | | 1,890 | 1,730 | | | 6,680 | 8.0 | | | | | | | | | CLEAR | FORK BRAZ | OS RIVER | CLEAR FORK BRAZOS RIVER AT US HIGHMAY 180 NEAR LUEDERS | GHWAY 1 | 80 NEAR | LUEDERS | | | | | | | | | | | Jan. 30, 1959 | | | | 355 | 146 | 75 | 985 | 266 | 1,260 | 718 | | | | | | | 1,490 | 1,270 | | | 4,410 | 8.0 | | | | | | | | | HUBB | ARD CREEK | C AT US H | HUBBARD CREEK AI US HIGHWAY 180 NEAR BRECKENKIDGE | O NEAR | BRECKEN | RIDGE | | | | | | | | | | | Jan. 30, 1959 | | | | | | 4 | 665 | 162 | 115 | 1,300 | | | | | | | 1,000 | 867 | | | 4,310 | 7.9 | | | | | | | | | | ה | KE CISCO | LAKE CISCO AT DAM NEAR CISCO | EAR CIS | 00 | | | | | | | | | | | | Mar. 12, 1959 | | 2.2 | | 38 | 3.6 | 4.5 | 4.5 | 128 | 12 | 0.9 | 0.2 | 0.2 | | 1914 | 0.19 | | 110 | 5 | 8 | 0.2 | 249 | 8.0 | | | | | | | | | BIGS | BIG SANDY CREEK | AT | US HIGHWAY 180 NEAR BRECKENRIDGE | 80 NEAR | BRECKE | VRIDGE | | | | | | | | | | | Jan. 30, 1959 | | | | | | 24 | 245 | 148 | 09 | 525 | | | | | | | 392 | 270 | | | 2,040 | 8.2 | | | | | | | | | | LA | CE DANIEL | LAKE DANIEL NEAR BRECKENRIDGE | CKENRID | GE | | | | | | | | | | | | Mar. 12, 1959 | | 1.3 | | 36 | 4.1 | | 14 | 123 | 9.6 | 18 | 0.2 | 0.0 | | 6150 | 0.20 | | 107 | 9 | 22 | 9.0 | 274 | 7.7 | | | | | | | | CLEAR FO | ORK BRAZ | OS RIVER | AT FM RO. | AD 701 BE | TWEEN E | LIASVILI | LE AND S | CLEAR FORK BRAZOS RIVER AT FM ROAD 701 BETWEEN ELLASVILLE AND SOUTH BEND | | | | | | | | | | Jan. 30, 1959 | 4.9 | | | 195 | 52 | 36 | 363 | 224 | 90 | 860 | | | | | | | 700 | 517 | | | 3,110 | 8.1 | | | | | | | | | | 88 | 883. OAK (| OAK CREEK NEAR GRAHAM | R GRAHA | 4 | | | | | | | | | | | | May 12, 1959 | | 12 16 | | 16 | 4.0 | 3.6 | 10 7.3 | 63 | 12 4.0 | 8.0 | 4.0 | 2.5 | | 96 | 0.13 | | 95
70 | т0 | 28 | 0.6 | 163 | 7.4 | ### BRAZOS RIVER BASIN--Continued ### MISCELLANEOUS ANALYSES OF STREAMS IN BRAZOS RIVER BASIN IN TEXAS--Continued Chemical analyses, in parts per million, water year October 1958 to September 1959 -- Continued | | | | | Cal- | Mag- | So- Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 27230 | solved sol | | Hard
as Co | | Per- | So-
dium | Specific conduct- | | |--------------------|-------------------------|---|--------------|--|--|--|---
--|--|---|---|------------|---|--|--------------------|--|--|--|---|--|----------------------------------| | Date of collection | Dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium tas-
sium
(Na) (K) | bonate
(HCO ₁) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | pН | | | | | | | | | | LAKE GR | AHAM NEAR | GRAHAM | | | | | | | | | | | | | Oct. 9, 1958 | 2 | 5.2
3.8
2.5
2.4
2.2
1.2
1.6
2.0
2.9
2.8
2.8 | | 58
62
63
63
64
66
67
68
64
58
54 | 11
12
12
14
12
12
15
15
15
15
12 | 93
92
93
99
101
107
106
114
114
100
92 | 141
148
153
156
158
162
167
160
139
126
124 | 13
14
14
15
15
15
17
16
15
14 | 186
190
190
202
200
211
215
235
240
210
192
198 | 0.2
.2
.4
.3
.3
.2
.2
.2
.3
.4 | 0.5
.5
.0
.0
.0
.2
.8
.0
.0 | | 436
448
450
473
472
493
504
529
518
461
425
5480 | 0.59
.61
.61
.64
.64
.67
.69
.72
.70
.63
.58 | | 190
204
206
214
209
214
228
231
221
198
184
189 | 74
82
81
86
80
81
92
100
107
94
82
86 | 52
50
49
50
51
52
50
52
53
52
52
52 | 2.9
2.8
2.8
2.9
3.0
3.2
3.0
3.3
3.3
3.1
3.0 | 864
889
906
921
934
954
1,000
1,030
1,070
927
842
854 | 8.
7.
8.
7.
7.
7. | | | | | | | | | BARTON CE | EEK NEAR | US RIGHW | AY 80 N | EAR GORE | OON | | | | | | | | | | | Apr. 21, 1959 | | 0.7 | | 97 | 51 | 208 | 146 | 426 | 242 | 0.2 | 0.0 | | 1,100 | 1.50 | | 452 | 332 | 50 | 4.3 | 1,730 | 7.1 | | | | | | | | | | LAKE LE | ON NEAR E. | ASTLAND | | | | | | | | | | | | | Mar. 12, 1959 | | 3.0 | | 48 | 6.6 | 26 | 137 | 24 | 46 | 0.2 | 0.1 | | b236 | 0.32 | | 147 | 35 | 28 | 0.9 | 415 | 8.1 | | | | | | | | | ç | 991. LEO | N RIVER N | EAR DE | LEON | | | | | | | | | | | | Apr. 21, 1959 | | 9.6 | | 119 | 26 | 165 | 215 | 78 | 358 | 0.2 | 0.2 | | 862 | 1.17 | | 404 | 228 | 47 | 3.6 | 1,580 | 7.4 | | | | | | | | | ī | BELTON RE | SERVOIR N | EAR BEL | TON | | | | | | | | | | | | Mar. 30, 1959 | | 5.8 | 0.03 | 55 | 11 | 32 | 184 | 30 | 47 | 0.4 | 1.0 | | ь289 | 0.39 | | 182 | 31 | 27 | 1.0 | 484 | 8.2 | | | | | | | | SA | N GABRIEL I | RIVER AT | STATE HIG | HWAY 29 | NEAR GI | EORGETO | WN | | | | | | | | | | May 16, 1959 | | 6.0 | | 62 | 14 | 13 | 203 | 28 | 25 | 0.2 | 11 | | b 276 | 0.38 | | 212 | 46 | 12 | 0.4 | 451 | 7.0 | | | | | | | | | 1100 |). YEGUA | CREEK NE | AR SOME | RVILLE | | | | | - | | | | | | | Mar. 20, 1959 | 31 | 19 | | 108 | 30 | 101 | 110 | 2.72 | 168 | 0.5 | 0.0 | | ь803 | 1.09 | | 393 | 303 | 36 | 2.2 | 1,200 | 7.6 | | | 1 | | - | | | | NAVASOTA R | IVER AT S | TATE HIGH | WAY 90 | NEAR NAV | ASOTA | | | | | | | | | | | | | 14 | _ | 42 | 10 | 90 | 102 | 55 | 140 | 0.5 | | | b435 | 0.59 | | 146 | 62 | 57 | | 737 | 7.2 | b Residue on evaporation at $180\,^{\circ}\text{C}$. SAN BERNARD RIVER BASIN MISCELLANEOUS ANALYSES OF STREAMS IN SAN BERNARD RIVER BASIN IN TEXAS | | 9 | | | | | | Po | | - | 5 | ī | ; | | ü | Dissolved solids | spi (F | Hardness
as CaCO, | ico. | ď. | So. | Specific
conduct- | | |-------------------------|----------------------------|----------|--------------|--------|--------------|--------------|------------|-------------------------------|---------------|--|-------------|----------------|------------|----------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|------------------------------|-----| | - | - | _ | - | - | _ | - | | Dicar- | -inc | 9000 | Lino | ż | 20- | | מזרחומרם | () | | | | dium | | | | Date of collection chai | charge (SiO ₂) | 7.) (Fe) | Cium
(Cam | | sium
(Mg) | dium
(Na) | (K) Si'r E | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil- | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | Hď | | | | | | | | | SA | N BERNAR |) RIVER | SAN BERNARD RIVER AT US HIGHWAY 90 NEAR SEALY | ниах 90 | NEAR SE | EALY | | | | | | | | | | | Mar. 17, 1959 a5 | 15 | 5 0.30 | | 9.0 2. | 2.4 | 26 | | 25 | 7.0 | 43 | 0.1 | 1.0 | | 116 | 0.16 | | 32 | 12 | 79 | 2.0 | 209 | 7.2 | | | | | | | | | SAN | BERNARD | RIVER AT | SAN BERNARD RIVER AI US HIGHWAY 90A AI EAST BERNARD | ANY 90A | AT EAST | BERNARD | | | | | | | | | | | Apr. 25, 1959 | 11 | | 11 | | 2.8 | 8.6 | 0.5 | 17 | 5.4 | 14 | 0.2 | 1.2 | | 92 | 0.10 | | 39 | 2 | 35 | 0.7 | 135 | 5.4 | | | | | | | | | WEST | BERNARD | SIVER AT | WEST BERNARD RIVER AT STATE HIGHWAY 60 AT HUNGERFORD | GHWAY 6 | O AT HUN | GERFORD | | | | | | | | | | | Apr. 25, 1959 | 14 | - | 20 | 4.3 | £. | 23 | | 107 | 4.4 | 17 | 0.2 | 0.2 | | 136 | 0.18 | | 68 | 0 | 75 | 1.2 | 244 | 6.3 | - 72 - ### COLORADO RIVER BASIN ### 1195. COLORADO RIVER NEAR IRA, TEX. LOCATION .-- At gaging station at bridge on State Highway 350, 3 3/4 miles downstream from Bluff Creek, 4 miles upstream from Willow Creek, 4.5 miles southwest of Ira, Scurry County, and at mile 825. BRAINAGE AREA.--3,617 square miles, approximately, of which 2,590 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: November 1958 to September 1959. Water temperatures: November 1958 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 39,100 ppm Mar. 14-25; minimum, 255 ppm June 4-6. Hardness: Maximum, 3,830 ppm Mar. 14-25; minimum, 102 ppm June 4-6. Specific conductance: Maximum daily, 55,500 micromhos Mar. 25; minimum daily, 450 micromhos June 5. Water temperatures: Maximum, 88°F Apr. 25, May 17, June 28-29; minimum, freezing point Dec. 14. water temperatures. Indicating of a property of the second Water-Supply Paper 1632. | | | | | | Chemi | cal analy | /ses, in | parts pe | r millio | n, Novembe | er 1958 | to Sept | ember 1 | 1959 | | | | | | | | | |--|---|--|------|---|---|---------------------|---|--|---|---|-------------|-----------------------------|------------|---|---|--|---|--|--|---|---|--| | | Mean | | | Cal- | Mag. | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | | Haro
as C | iness
cCO; | Per- | So-
dium | Specific
conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Nov. 1-6, 1958
Nov. 7-13, 25-30
Nov. 14-24 | 0.25
.42
2.35
.30
.39 | 1.2
3.6
3.9
2.2
3.8 | | 465
514
387
553
568 | 172
169
128
186
205 | 6,4
4,4
7,2 | 220
490
450
210
380 | 93
105
98
153
188 | 1,400
1,410
1,110
1,550
1,580 | 9,830
10,300
7,050
11,400
11,700 | | | | 18,100
18,900
13,200
21,000
21,500 | 24.9
26.0
18.1
28.9
29.6 | 12,2
21.4
83.8
17.0
22.6 | 1,870
1,980
1,490
2,140
2,260 | 1,790
1,890
1,410
2,020
2,110 | 88
88
87
88
88 | 63
63
50
68
67 | 27,500
28,500
20,600
31,100
32,100 | 7.9
7.6
7.2
7.8
7.9 | | Jan. 1-15,
1959
Jan. 16-31
Feb. 1-14
Feb. 15-28 | .39
.39
.46 | 5.2
3.7
2.7
2.3 | | 591
619
630
669 | 226
226
231
251 | 8,4 | 110
440
650
160 | 184
161
159
144 | 1,770
1,860
1,940
2,110 | 12,800
13,300
13,600
14,400 | | | | 23,600
24,500
25,100
26,700 | 32.6
33.9
34.7
36.9 | 24.9
25.8
31.2
27.4 | 2,400
2,470
2,520
2,700 | 2,250
2,340
2,390
2,580 | 88
88
88
88 | 72
74
75
77 | 33,400
35,000
35,500
37,400 | 7.7
7.5
7.9
7.7 | | Mar. 1-13 | .23
.18
3.53
.26
1.52
a .12 | 3.8
3.4
4.4
3.3
4.8
3.1 | | 744
955
659
688
446
726 | 308
353
239
290
160
300 | 9,080 | | 137
129
127
114
100
84 | 2,470
3,020
2,220
2,410
1,510
2,340 | 16,700
21,200
12,900
14,200
8,660
15,500 | | | | 30,900
39,100
24,400
26,700
16,400
28,700 | 42.9
54.6
33.7
37.0
22.5
39.8 | 19.2
19.0
233
18.7
67.3
9.30 | 3,120
3,830
2,630
2,910
1,770
3,040 | 3,010
3,730
2,520
2,820
1,690
2,980 | 88
88
87
87
87
88 | 83
95
70
73
57 | 41,600
49,900
33,900
36,800
24,300
39,200 | 7.9
7.7
7.8
7.1
7.3
6.9 | | May 1-4, 18-23 | al.12
11.0
a.44
57.2
75.7
1.05
a.10
9.49
2.48 | 3.7
4.9
4.8
10
12
11
7.9
7.8
8.3 | | 523
168
293
54
34
168
269
122
199 | 216
59
116
11
4.1
53
91
40
77 | 1,4
3,4
1,3,4 | 100
850
870
321
53
960
260
100 | 80
107
93
90
108
102
96
87
101 | 1,560
480
889
90
27
416
701
267
546 | 11,300
2,900
6,110
502
69
3,100
5,200
1,780
3,760 | | 3.0 2.8 3.0 | | 20,700
5,510
11,300
1,040
255
5,760
9,580
3,360
7,000 | 28.5
7.49
15.5
1.41
.35
7.83
13.1
4.57
9.55 | 62.6
164
13.4
161
52.1
16.3
2.59
86.1
46.9 | 2,190
662
1,210
180
102
637
1,040
469
813 | 2,130
574
1,130
106
13
554
966
398
730 | 88
86
87
80
53
87
87
84
86 | 66
31
48
10
2.3
34
44
22
36 | 29,200
9,260
17,600
1,910
467
9,400
14,900
5,770
11,300 | 6.7
7.2
7.5
6.9
7.1
6.8
7.1
7.1 | | July 1-4, 15-16, 18-19-
July 5-14 | 8.31
.74
80.0
a .78
5.84
.94 | 7.9
8.4
18
7.2
12 | | 145
279
50
284
303 | 48
106
11
96
81 | 3, | 520
330
300
190
180 | 88
87
109
89
68
45 | 374
718
88
716
716 | 2,420
5,350
452
5,120
5,100
13,400 | | 4.8 | | 4,560
9,830
978
9,460
9,420 | 6.20
13.4
1.33
12.9
12.9 | 102
19.6
211
19.9
149 | 560
1,130
170
1,100
1,090
2,360 | 488
1,060
80
1,030
1,030
2,330 | 86
79
86
86 | 28
4.3
10
42
42 | 7,710
15,400
1,790
14,800
15,000
34,100 | 7.2
6.9
6.8
6.8
7.6 | | Weighted average | b2.76 | 9.7 | | 155 | 50 | 1, | 670 | 100 | 406 | 2,640 | | | | 4,990 | 6.79 | 37.2 | 592 | 510 | 86 | 30 | 7,650 | | a Includes days of less than 0.05 rubic feet per second discharge. b Represents 98 percent of runoff for water year October 1958 to September 1959. No flow on many days. ### COLORADO RIVER BASIN--Continued ### 1210. COLORADO RIVER AT COLORADO CITY, TEX. LOCATION. -- At gaging station at Colorado City, Mitchell County, 3,517 feet upstream from bridge on U. S. Highway 80, 4,100 feet upstream from Texas & Pacific Railway bridge, 1.6 miles upstream from Lone Wolf Creek, and at mile 796. DRAINAGE AREA .-- 4,082 square miles, approximately, of which 2,590 square miles is probably noncontributing. RECORDS AVAILABLE. --Chemical analyses: May 1946 to September 1954, November 1956 to September 1959. Water temperatures: November 1952 to September 1954, November 1956 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 19,000 ppm Apr. 1-7; minimum, 385 ppm July 2-3, 13-14. Hardness: Maximum, 2,560 ppm Apr. 1-7; minimum, 110 ppm July 2-3, 13-14. Specific conductance: Maximum daily, 30,500 micromhos May 1; minimum daily, 605 micromhos July 2. Water temperatures: Maximum, 93°F June 19; minimum, freezing point Dec. 30-31, Jan. 4. EXTREMES, 1946-54, 1956-59.--Dissolved solids: Maximum, 32,800 ppm Apr. 1-10, 1952; minimum, 176 ppm Oct. 26, 1947. Hardness: Maximum, 4,500 ppm Aug. 9-12, 1946; minimum, 65 ppm Sept. 15-20, 1949. Specific conductance: Maximum daily, 45,800 micromhos Apr. 1-10, 1952; minimum daily, 245 micromhos May 14, 1957. Water temperatures (1956-59): Maximum, 93°F July 30, 1957, Aug. 19, 1958, June 19, 1959; minimum, freezing point on several days during December and January. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | | | | | Chem | ical anai | yses, 1 | n parts p | er millio | on, water | year o | tober 1 | 958 to | September | 1959 | | | | | | | | |------------------------|--------|---------------------|------|------------|-----------|--------------|---------|---------------------|-----------|----------------|--------|--------------------|--------|----------------|---------------|-------------|----------------|----------------|----------|-----------------|----------------------|-----| | | Mean | | | 6.1 | Mag- | | Po- | n. | | | - | | | | ssolved so | 2000 | Hard
as Co | | Per- | So- | Specific
conduct- | | | 8 8 | dis- | Silica | Iron | Cal- | ne- | So- | tas- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | - | - | euj | | | cent | dium | ance | ρΗ | | Date of collection | charge | (SiO ₂) | (Fe) | cium | sium | dium | sium | bonate | fate | ride | ride | trate | ron | Parts | Tons | Tons | Cal-
cium, | Non- | 50- | adsorp-
tion | (micro- | P | | | (cfs) | | | (Ca) | (Mg) | (Na) | (K) | (HCO ₃) | (SO,) | (CI) | (F) | (NO ₃) | (B) | mil-
lion | acre-
foot | per
day | magne-
sium | carbon-
ate | dium | ratio | mhos at
25°C) | | | Oct. 1-5, 1958 | 6.42 | 5.4 | | 92 | 29 | 89 | 7 | 87 | 216 | 1,420 | | 0.5 | | 2,700 | 3.67 | 46.8 | 348 | 277 | 85 | 21 | 4,900 | 7.7 | | Oct. 6-20 | 3.64 | 3.1 | | 153 | 52 | 1,61 | | 82 | 367 | 2,580 | | | | 4,810 | 6.54 | 47.3 | 596 | 528 | 85 | 29 | 8,340 | 7.7 | | Oct. 21-31 | 2.25 | 3.8 | | 242 | 83 | 2,64 | | 88 | 610 | 4,240 | | | | 7,860 | 10.7 | 47.7 | 946 | 874 | 86 | 37 | 13,100 | 7.3 | | Nov. 1-20 | 3.01 | 3.6 | 1 | 294 | 104 | 3,12 | | 92 | 735 | 5,030 | | | | 9,330 | 12.7 | 75.8 | 1,160 | 1,070 | 85 | 40 | 15,200 | 7.2 | | Nov. 21-30 | 1.53 | 3.0 | | 361 | 140 | 3,82 | | 104 | 896 | 6,220 | | | | 11,500 | 15.7 | 47.5 | 1,480 | 1,390 | 85 | 43 | 18,500 | 7.6 | | Dec. 1-15 | 1.01 | 2.3 | | 407 | 158 | 4,47 | 0 | 128 | 1,090 | 7,200 | | | | 13,400 | 18.4 | 36.5 | 1,660 | 1,560 | 85 | 48 | 21,000 | 7.6 | | Dec. 16-31 | 1.20 | 2.1 | | 466 | 170 | 4.78 | 0 | 138 | 1,170 | 7,740 | | | | 14,400 | 19.7 | 46.7 | 1,860 | 1,750 | 85 | 48 | 22,400 | 7.5 | | Jan. 1-15, 1959 | 1.73 | 3.0 | | 496 | 175 | 5,18 | 0 | 137 | 1,250 | 8,370 | | | | 15,500 | 21.3 | 72.4 | 1,960 | 1,840 | 85 | 51 | 23,600 | 7.4 | | Jan. 16-31 | 1.97 | 2.9 | | 470 | 188 | 4,95 | 0 | 131 | 1,250 | 8,020 | | | | 14,900 | 20.5 | 79.3 | 1,950 | 1,840 | 85 | 49 | 23,100 | 8.2 | | Feb. 1-13 | 1.81 | 4.1 | | 461 | 184 | 4,84 | | 131 | 1,290 | 7,790 | | | | 14,600 | 20.0 | 71.4 | 1,910 | 1,800 | 85 | 48 | 22,200 | 7.8 | | Feb. 14-26 | 2.48 | 3.5 | | 486 | 195 | 5,26 | | 133 | 1,420 | 8,420 | | | | 15,800 | 21.7 | 106 | 2,010 | 1,910 | 85 | 51 | 23,800 | 7.6 | | Feb. 27-28, Mar. 1-3 | 3.50 | 4.4 | | 407 | 165 | 4,04 | | 115 | 1,110 | 6,550 | | | | 12,300 | 15.8 | 116 | 1,690 | 1,600 | 84 | 43 | 19,200 | 7.9 | | Mar. 4-14 | 1.01 | 4.0 | | 515 | 188 | 5,62 | | 124 | 1,490 | 8,960 | | | | 16,800 | 23.1 | 45.8 | 2,060 | 1,960 | 86 | 54 | 25,200 | 7.7 | | Mar. 15-25 | a .11 | 2.7 | | 574 | 246 | 6,15 | | 118 | 1,700 | 9,890 | | | | 18,600 | 25.6 | 5.52 | 2,440 | 2,350 | 85 | 54 | 27,600 | 7.5 | | Mar. 26-31 | a6.53 | 4.0 | | 432 / | 179 | 4,20 | 0 | 116 | 1,280 | 6,750 | | | | 12,900 | 17.7 | 227 | 1,810 | 1,720 | 83 | 43 | 19,700 | 7.2 | | Apr. 1-7 | 2.81 | 4.4 | | 598 | 260 | 6,330 | | 87 | 1,680 | 10,100 | | | | 19,000 | 26.2 | 144
269 | 2,560 | 2,490 | 84
85 | 54
46 | 27,300 | 7.3 | | Apr. 8-20 | 7.55 | 3.6 | 1 | 417 | 161 | 4,36 | | 86 | 1,250 | 6,950 | | | | 13,200 | 18.1 | 25.2 | 2,070 | 2,010 | 86 | 54 | 24,800 | 6.9 | | Apr. 21-30 | a .55 | 4.9 | | 505 | 198 | 5,66 | | 75 | 1,550 | 9,010 | | | | 16,700 | 22.9 | 175 | 2,160 | 2,010 | 85 | 52 | 24,300 | 6.9 | | May 1-4 | a3.88 | 5.2 | | 515 | 213
61 | 5,53
1,65 | | 81
96 | 1,550 | 8,860
2,580 | | | | 5,000 | 6.80 | 437 | 655 | 576 | 85 | 28 | 8,360 | 7.5 | | May 5-11 | 32.4 | 5.0 | | 162
251 | 104 | 2,91 | | 74 | 793 | 4,610 | | | | 8,710 | 11.9 | 74.1 | 1,050 | 993 | 86 | 39 | 13,900 | 6.7 | | May 12-23
May 24-31 | a .05 | 4.1 | | 231 | 1.04 | 2,91 | | 83 | 793 | 6,850 | | | | 0,710 | 11.5 | 74.1 | 1,550 | 1,480 | | | 19,300 | 6.5 | | | 1000 | | | | | | | | | 1340.4100.50 | | | | | | | 0.0000000 | 2005.000000 | | | | | | June 1-3, 9-11 | | 12 | | 100 | 29 | 76 | | 101 | 215 | 1,220 | | 2.5 | | 2,390 | 3.25 | 961 | 368 | 286 | 82 | 17 | 4,190 | 7.3 | | June 4 | | 11 | | 40 | 5.0 | 11 | | 110 | 41 | 170 | | .4 | | 437 | .59 | 1,880 | 120 | 30 | 68 | 4.6 | 793 | 7.4 | | June 5-6, 8, 26-27 | 85.0 | 8.8 | | 68 | 14 | 35 | | 117 | 102 | 568 | | 3.0 | | 1,180 | 1.60 | 271 | 227 | 131 | 77 | 10 | 2,140 | 7.7 | | June 7, 24-25 | | 11 | | 44 | 4.9 | 15 | | 112 | 54 | 225 | | .2 | | 548 | .75 | 291 | 130 | 38 | 72 | 5.9 | 1,000 | 7.4 | | June 12-19 | 2.41 |
11 | | 183 | 61 | 1,75 | | 83 | 430 | 2,840 | | | | 5,320 | 7.24 | 34.6 | 708 | 640 | 84 | 29 | 8,860 | 7.0 | | June 20-23, 28-30 | 13.4 | 6.3 | | 111 | 31 | 95 | | 72 | 237 | 1,540 | | 1.0 | | 2,920 | 3.97 | 106 | 404 | 346 | 84 | 21 | 5,100 | 6.9 | | July 1,4-5 | | 12 | | 70 | 17 | 45 | | 104 | 116 | 730 | | 2.0 | | 1,460 | 1.99 | 591 | 244 | 160 | 80 | 13 | 2,580 | 7.7 | | July 2-3, 13-14 | | 13 | | 36 | 5.0 | 9 | | 104 | 34 | 144 | | 2.2 | | 385 | .52 | 468 | 110 | 26 | 66 | 4.1 | 687 | 7.5 | | July 6-12 | | 11 | | 112 | 33 | 94 | | 109 | 244 | 1,500 | | 1.0 | | 2,900 | 3.94 | 150 | 415 | 326 | 83 | 20 | 5,040 | 7.1 | | July 15, 17-20 | 93.6 | 9.2 | 1 | 51, | 12 | 34 | | 87 | 94 | 530 | | 1.2 | | 1,080 | 1.47 | 273 | 176 | 105 | 81 | 11 | 1,980 | 7.6 | | July 16, 21-31 | 4.06 | 6.0 | | 112 | 35 | 1,06 | 0 | 74 | 278 | 1,690 | | 1.5 | | 3,220 | 4.38 | 35.3 | 424 | 363 | 85 | 22 | 5,510 | 7.0 | | Aug. 1-10 | | 10 | | 210 | 76 | 2,17 | | 51 | 549 | 3,500 | | | | 6,540
7,920 | 8.89 | .18
5.13 | 836
974 | 794
928 | 85
85 | 33
37 | 10,400 | 6.9 | | Aug. 11-31 | | 9.6 | | 252 | 84 | 2,64 | | 57 | 687 | 4,220 | | | | | 17.8 | 36.2 | 1,650 | 1,600 | 85 | 46 | 19,500 | 6.6 | | Sept. 1-29 | al.03 | 9.3 | | 140 | 145 | 4,30 | | 60
76 | 1,080 | 6,970 | | .5 | | 13,000 | 4.42 | 21.9 | 522 | 460 | 81 | 20 | 5,620 | 7.5 | | Sept. 30 | 2.50 | 6.0 | + | | 42 | 1,03 | | 10 | 293 | 1,700 | - | | - | 3,230 | 4,42 | 21.7 | 322 | 400 | OI | 20 | 3,020 | 1.5 | | Weighted average | 20.2 | 11 | | 89 | 24 | 64 | 1 | 104 | 178 | 1,010 | | | | 2,010 | 2.73 | 110 | 310 | 226 | 82 | 16 | 3,300 | | a Includes days of less than 0.05 cubic feet per second discharge. 0 0 0 0 0 Includes days of less than 0.05 cubic feet per second discharge. Includes equivalent of 10 parts per million of carbonate (CO₂). Includes equivalent of 18 parts per million of carbonate (CO₂). Includes equivalent of 15 parts per million of carbonate (CO₂). Residue on evaporation at $180^{\circ}\mathrm{C}$. ### COLORADO RIVER BASIN -- Continued ## 1238. BEALS CREEK NEAR WESTBROOK, TEX. DRAINAGE AREA.--10,800 square miles, approximately, of which 7,045 square miles is probably noncontributing. RECORDS AVAILABLE.--Chemical analyses: November 1938 to September 1939. Water temperatures: November 1958 to September 1959. Water temperatures: November 1958 to September 1959. Water temperatures: November 1958 to September 1959. Water temperatures: Naximum, 26,040 ppm Aug. 18-20, 77-28; minimum, 18-20; mini ## Chemical analyses to September | May 1.3 | Mar. 2-4 | Jan. 6, 12-20, 1959 Jan. 21-31 Feb. 1-19 Feb. 29-27 Feb. 28, Mar. 1 | Nov. 1-3, 1938 | Date of collection | |--|---|---|--|---| | 4.70
13.7
50.0
79.0
11.05
29.6
456
456
7.08
3.05
185
60.6 | | .16
a .14
.21
2.90
9.25 | 4.88
.10
21.0
a4.15
5.66
a .16
.34
a .17 | Mean
dis-
charge
(cfs) | | 9.6
8.9
12
9.4
5.7
10
7.5
9.9 | 4.8
4.8
4.2
4.5 | 3.4
3.1
4.2
7.0 | 3.1
6.2
7.9
7.9
1.8 | Silica
(SiO ₂) | | | | | | Iron
(Fe) | | 24
79
98
52
176

170
31
58 | 137
137
86
200
166
44
128 | 146
146
148 | 51
28
124
66
89
120
149 | Cal-
cium
(Ca) | | 7.8
50
74
118
170
9.3
36
53 | 134
199
74
280
225
26
133 | 213
217
238
238
228 | 26
5.9
109
42
71
112
193 | Mag-
ne-
sium
(Mg) | | 283
383
383
141
141
852
202
202
352
352
352 | 720
1,080
405
1,440
1,100
194
739 | 1,080
1,140
1,170
1,240
273 | 186
43
556
252
462
608
949 | So-
dium
(Na) | | 59 55 55 55 55 55 55 55 55 55 55 55 55 5 | 32 | 73 60 60 | 6 8 8 8 8 6 6 | Po-
tas-
sium
(K) | | 230
126
138
204
126
172
232
124
142
114
116 | 231
186
118
5238
5238
6286
101
d204 | 158
152
190
174
133 | 99
100
83
215
127
167
153
194 | So- tas- bonate fate ride ride trate ron Parts (Na) (K) (HCO.) (SO.) (CI) (F) (NO.) (B) mil. iion | | 47
274
372
1115
824
48
214
315
52 | 1,010
419
1,520
1,060
1,060
699 | 1,070
1,120
1,180
1,190
230 | 145

36
567
223
411
590
928 | Sul-
fate
(SO ₂) | | 1,520
54
435
580
202
1,410
780
79
310
575
74 | 1,100
1,630
612
2,180
1,690
258
1,120 | 1,670
1,730
1,770
1,850
405 | 285
285
57
840
380
670
950
1,490 | Chlo-
ride
(Cl) | | | 1.7 | ::::: | 0.4
1.2
1.2 | Fluo-
ride
(F) | | 2.2
7.6
11
3.0
5.0
1.5
3.7
2.5 | 9.8
6.0
2.5
2.5
2.0 | 2.0
9.7
6.5
7.0
7.2 | 2.5
1.5
1.5
1.5
1.5 | Ni-
trate
(NO ₃) | | | | | | Bo- | | 271
1,210
1,630
602
3,530
1,460
299
e767 | 2,910
4,160
1,670
5,780
4,390
4,390
2,920 | 4,260
4,440
4,610
4,750
1,100 | 750
220
2,320
1,050
1,800
2,460
3,810 | Parts per mil. | | | 3.96
5.66
2.27
7.86
5.97
1.04
3.97 | 5.79
6.04
6.27
6.46
1.50 | 1.02
.30
3.16
1.43
2.45
3.35
5.18 | Dissolved solids (calculated) Tons per acre- foot | | 3.44
44.8
220
128
10.0
398
17.6
12.0
149 | 4.95
.90
7.21
39.0
5.45
3.71 | 1.84
1.68
2.61
37.2
27.5 | 9.88
12.5
'26.0
16.0
178
2.26
1.75 | lids ed) Tons per day | | 1,190
92
.402
549
204
1,140
605
123
340
468
118
252 | 893
1,160
519
1,650
1,340
217
866 | 1,250
1,250
1,340
1,300
332 | 234
241
94
758
337
514
760
1,170 | Cal-
cium,
magne-
sium | | 1,000
0
290
382
1100
997
415
22
224
374
154 | 704
1,010
422
1,460
1,100
134
699 | 1,120
1,130
1,190
1,160
223 | 153
159
26
582
233
377
634
1,010 | Hardness as CaCO, al. Non- gne- gne- ate | | 54
54
54 | 64
65
65
65
65 | 65
67
67 | 50
61
62
63 | Per-
cent
so-
dium | | 2.9
6.2
7.1
11
11
11
12.5
13
14.3 | 10
14
7.7
13
5.7 | 114 | 1.9
8.8
8.9
9.6 | So-
dium
adsorp-
tion
ratio | | 6,140
479
2,120
2,800
1,100
1,100
3,170
5,550
3,170
5,550
1,600
2,510
2,510
2,510 | 4,740
6,540
2,800
8,490
6,760
1,360
4,640 | 6,720
6,910
7,100
7,250
1,940 | 1,380
1,370
400
3,780
1,890
2,980
4,090
6,040 | Specific conduct-ance (micromhos at 25° C) | | 7.5
7.5
7.3
7.2
7.7
7.7
7.7
7.7 | 8.1.22
8.1.5 | 6.8
7.9
7.8 | 8.2
7.7
7.8
7.3
7.3
7.7 | р
Н | ### 1238. BEALS CREEK NEAR WESTBROOK, TEX .-- Continued Chemical analyses, in parts per million, November 1958 to September 1959 -- Continued | | Mean | an. | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 1 | issolved so
(calculate | | | dness
aCO ₃ | Per- | So-
dium | Specific
conduct- | | |----------------------|-------------------------|-------------------------------|------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|-----------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25°C) | pН | | July 1, 4-8, 10, 14, | 20-22, 1959 | 22.2 | 11 | | 73 | 49 | 28 | 38 | 117 | 246 | 465 | | 3.5 | | 1,190 | 1.62 | 71.3 | 384 | 288 | 62 | 6.4 | 2,050 | 7.7 | | July 2, 12 | 164 | 10 | | 24 | 5.9 | | 33 | 96 | 22 | 37 | | 1.5 | | 180 | .24 | 79.7 | 84 | 6 | 46 | 1.5 | 317 | 7.8 | | July 3, 23-25 | 21.4 | 6.6 | | 117 | 128 | 55 | 55 | 142 | 546 | 950 | | 2.0 | | 2,370 | 3.22 | 137 | 818 | 702 | 60 | 8.4 | 3,970 | 7.0 | | July 9, 11 | 41.0 | 9.4 | | 43 | 15 | 14 | -1 | 100 | 81 | 218 | | 1.2 | | e577 | .78 | 63.9 | 169 | 87 | 64 | 4.7 | 1,010 | 7. | | July 13, 17-19 | 467 | 7.3 | | 35 | 12 | | 9 | 97 | 62 | 1.00 | | 1.8 | | e348 | .47 | 439 | 137 | 58 | 52 | 2.6 | 602 | 7.3 | | July 15-16 | 48.0 | 11 | | 159 | 325 | 1,26 | 0 | 127 | 1,170 | 2,240 | | | | 5,230 | 7.11 | 678 | 1,730 | 1,630 | 61 | 13 | 8,060 | 7.6 | | July 26-31, Aug. 1-2 | 1.61 | 7.0 | | 138 | 200 | 85 | 50 | 115 | 812 | 1,470 | | 4.0 | | 3,540 | 4.81 | 15.4 | 1,170 | 1,070 | 61 | 11 | 5,600 | 6.9 | | Aug. 18-20, 27-28 | al.34 | 5.7 | | 253 | 488 | 2,09 | 90 | 118 | 2,030 | 3,520 | | | | 8,440 | 11.6 | 30.5 | 2,640 | 2,540 | 63 | 18 | 12,400 | 6. | | Sept. 30 | 91.0 | 10 | | 34 | 6.8 | 2 | 23 | 127 | 26 | 2.7 | | 1.0 | | 184 | .25 | 45.2 | 113 | 9 | 31 | .9 | 320 | 7. | | Weighted average | f15.9 | 8.9 |
| 48 | 29 | 1.5 | 53 | 117 | 138 | 233 | | 2.3 | | 680 | 0.92 | 129.2 | 239 | 143 | 58 | 4.3 | 1,130 | - | a Includes days of less than 0.05 cubic feet per second discharge. e Residue on evaporation at 180°C. f Represents 91 percent of runoff for water year October 1958 to September 1959. No flow on many days. ### COLORADO RIVER BASIN--Continued ### 1239. COLORADO RIVER NEAR SILVER, TEX. LOCATION. -- At gaging station at bridge on county road, 5.4 miles southwest of Silver, Coke County, 11 miles upstream from Pecan Creek, 16.4 miles northwest of Robert Lee, and at mile 743. DRAINAGE AREA .-- 15,479 square miles, approximately, of which 11,600 square miles is probably noncontributing. RECORDS AVAILABLE. -- Chemical analyses: October 1956 to September 1959. Water temperatures: October 1956 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 12,800 ppm Apr. 21-30; minimum, 314 ppm June 3. Hardness: Maximum, 2,330 ppm Apr. 21-30; minimum, 128 ppm July 2-4. Hardness: Maximum, 2,330 ppm Apr. 21-30; minimum, 128 ppm July 2-4. Specific conductance: Maximum daily, 20,300 micromhos May 1, 1959; minimum, 180 ppm June 1-4, 1957. Hardness: Maximum, 88°F June 15; minimum, 12,800 ppm Apr. 21-30 1959; minimum, 180 ppm June 1-4, 1957. Hardness: Maximum, 2,330 ppm Apr. 21-30, 1959; minimum, 93 ppm Apr. 22-30, 1957. Specific conductance: Maximum daily, 20,300 micromhos May 1, 1959; inimum daily, 202 micromhos June 2, 1957. Water temperatures: Maximum, 88°F May 24, June 8, 1958, June 15, 1959; inimum daily, 202 micromhos June 2, 1957. REMARKS.--Values reported for dissolved solids concentrations less than 1,000 ppm are residues on evaporation and for concentrations more than 1,000 ppm are calculated from determined constituents EMARKS.--Values reported for alsolved solids concentrations less than 1,000 ppm are calculated from determined constituents unless otherwise noted. Records of specific conductance of daily samples available in district office at Austin, Tex. During periods of change in tage, the concentrations of dissolved constituents are subject to wide variations, and sampling at times has not defined properly the chemical quality at this station. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |---|--|--|------|---|--|---|----------------------------|---|---|---|-----------------------------------|---|------------|--|--|---|---|---|--|--|---|---| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | pН | | Oct. 1-7, 1958 Oct. 8-12 Oct. 13-14, 17-21 Oct. 15-16 Oct. 22-31, Nov. 1-10- Nov. 21-30 | 15.0
7.74
30.4
21.5
7.85
7.01
4.24 | 6.0
10
5.0
3.8 | | 74
130
80
46
138
192
200 | 16
29
18
12
36
49
68 | 38
63
29
15
54
61 | 57
52
52
57 | 101
103
101
97
119
122
129 | 169
346
208
106
395
560
590 | 582
980
430
215
830
940
1,240 | 0.3
.4
.4
.6
.5
.5 | 2.0
1.5
2.5
1.8
2.5
.8 | | 1,290
2,180
1,090
620
2,010
2,420
2,940 | 1.75
2.96
1.48
.84
2.73
3.29
4.00 | 52 .2
45 .6
89 .5
36 .0
42 .6
45 .8
33 .7 | 250
444
274
164
492
680
778 | 168
359
190
85
395
580
673 | 77
76
70
67
71
66
68 | 11
13
7.7
5.2
11
10 | 2,330
3,770
1,910
1,060
3,390
3,930
4,840 | 7.9
7.8
7.5
8.0
7.7
8.0
8.0 | | Dec. 1-10 | 2.00
1.52
1.84
1.64
1.86
2.05 | 5.6
5.0
4.6
8.2 | | 272
322
348
395
390
420 | 97
86
79
82
93
98 | 1,09
1,26
1,13
1,210
1,23
1,40 | 12 | 136
143
158
172
108
142 | 852
938
936
1,070
1,080
1,140 | 1,730
1,980
1,800
1,950
2,000
2,260 | .9 | .2 | | 4,110
4,660
4,380
4,810
4,850
5,390 | 5.59
6.34
5.96
6.54
6.60
7.33 | 22.2
19.1
21.8
21.3
24.4
29.8 | 1,080
1,160
1,190
1,320
1,360
1,450 | 966
1,040
1,060
1,180
1,270
1,330 | 69
70
67
66
66
68 | 14
16
14
14
15 | 6,580
7,450
6,990
7,520
7,550
8,320 | 8.0
7.8
7.9
8.0
8.0
8.1 | | Feb. 1-10 | 2.38
1.98
2.15
2.36
.40
a.14 | 5.6
7.0
7.2
7.9 | | 435
445
455
489
557
646 | 99
102
109
133
150
172 | 1,49
1,59
2,03
2,30
2,81
3,640 | 00
00 | 150
136
123
113
118
105 | 1,210
1,190
1,930
1,960
1,830
1,870 | 2,380
2,580
2,750
3,290
4,430
5,860 | | ======================================= | | 5,700
5,980
7,340
8,240
9,900
12,300 | 7.75
8.13
9.98
11.2
13.5
16.7 | 36.6
32.0
42.6
52.5
10.7
4.65 | 1,490
1,530
1,580
1,770
2,010
2,320 | 1,370
1,420
1,480
1,670
1,910
2,230 | 69
69
74
74
76
77 | 17
18
22
24
28
33 | 8,630
9,280
9,640
11,200
14,300
18,000 | 8.1
8.0
7.8
8.0
7.9
7.6 | | Apr. 7-20 | 2.78
.64
33.3
18.5
13.7
1.00 | 6.8
6.6
9.4
6.6 | | 513
591
369
108
152
218
309 | 169
207
122
28
56
77
116 | 2,66
3,90
2,2:
46
9:
1,2: | 00
70
88
52
70 | 78
82
105
89
107
87
82 | 1,550
1,760
1,030
247
457
686
993 | 4,310
6,310
3,690
760
1,500
2,010
3,090 | | | | 9,250
12,800
7,540
1,660
3,180
4,310
6,500 | 12.6
17.5
10.3
2.26
4.32
5.86
8.87 | 69.4
22.1
678
82.9
118
11.6 | 1,980
2,330
1,420
384
610
860
1,250 | 1,910
2,260
1,340
312
522
789
1,180 | 75
78
78
73
77
76
77 | 26
35
26
10
17
19
24 | 14,000
18,200
11,500
2,890
5,350
6,980
10,200 | 7.0
6.9
7.0
7.9
7.3
7.5 | | June 3 (12 p.m12 m.)- June 3 (12 m12 p.m.), 4 (12 p.m4 p.m.), June 4 (4 p.m12 p.m.) June 5-7- June 8-15- June 16-23, 25- June 24, 26-30 | 694
56.0
68.8 | 14
16
20
14
12
12
13 | | 108
74
52
82
132
64 | 26
16
11
21
37
17 | 59
28
12
42
69 | 34
16
13 | 154
137
193
129
108
109
119 | 222
138
82
191
335
146 | 70
930
400
180
652
1,100
365 | | 8.0
1.8
5.2
2.8
3.0
6.3 | | 1,970
1,030
544
1,440
2,370
950 | .43
2.68
1.40
.74
1.96
3.22
1.29 | 100
2,960
9,090
1,020
218
440
277 | 376
250
174
291
482
230 | 264
92
69
202
392
132 | 77
71
61
76
76
70 | 1.6
13
7.8
4.2
11
14
7.1 | 3,440
1,810
958
2,550
3,990
1,640 | 8.2
8.0
8.2
7.9
7.6
7.6
7.6 | a Includes days of less than 0.05 cubic feet per second discharge. b Calculated from determined constituents. ### 1239. COLORADO RIVER NEAR SILVER, TEX. -- Continued | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | Hard
as C | dness
aCO ₃ | Per- | So-
dium | Specific
conduct- | | |---|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|----------------------------|--------------|-------------|----------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO _z) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(Cl) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | July 1, 2 (12 m
12 p.m.), 5-9, 1959
July 2 (12 p.m12 m.), | 101 | 10
| | 81 | 34 | 33 | 33 | 120 | 210 | 530 | | 1.5 | | 1,260 | 1.71 | 344 | 342 | 244 | 68 | 7.8 | 2,190 | 7.6 | | 3-4 | 610 | 10 | | 39 | 7.4 | 7 | 7 7 | 113 | 43 | 110 | | 3.8 | | 350 | .48 | 576 | 128 | 36 | 57 | 3.0 | 623 | 7.4 | | July 10-11, 16-17,
26-27 | 65.7 | 17 | | 94 | 35 | 39 | 96 | 128 | 237 | 628 | | 3.5 | | 1,470 | 2.00 | 261 | 378 | 274 | 69 | 8.8 | 2,380 | 7.6 | | 12 p.m.), 19 (12 p.m
10 a.m.), 23-24
July 13 (9 a.m12 | 360 | 15 | | 68 | 21 | 23 | 35 | 120 | 138 | 370 | | 4.0 | | 967 | 1.32 | 940 | 256 | 158 | 67 | 6.4 | 1,600 | 7.7 | | p.m.), 14, 25 | | 16 | | 48 | 12 | 13 | | 122 | 72 | 201 | | 4.0 | | 571 | .78 | 424 | 170 | 70 | 63 | 4.5 | 975 | 7.8 | | July 15, 28-31 | | 16 | | 120 | 33 | 50 | | 130 | 276 | 810 | | 2.0 | | 1,830 | 2.49 | 173 | 435 | 328 | 72 | 11 | 3.080 | 7.5 | | July 18 (12 p.m12 m.)
July 19 (10 a.m | 742 | 1.7 | | 42 | 13 | 9 | 95 | 128 | 70 | 130 | | 4.8 | | ъ435 | . 59 | 871 | 160 | 55 | 56 | 3.2 | 765 | 7.9 | | 12 p.m.), 20-22 | 173 | 15 | | 50 | 13 | 1.7 | 7.7 | 114 | 86 | 268 | | 3.5 | | 683 | .93 | 319 | 178 | 85 | 68 | 5.8 | 1.190 | 7.7 | | Aug. 1-7 | | 15 | | 182 | 56 | 82 | 9 | 125 | 500 | 1,320 | | 2.5 | | 2,970 | 4.04 | 8.90 | 684 | 582 | 72 | 14 | 4,790 | 7.5 | | Aug. 8-17 | | 14 | | 288 | 79 | 1,40 | 00 | 116 | 782 | 2,250 | | | | 4,870 | 6.62 | 5.13 | 1,040 | 948 | 74 | 19 | 7,650 | 7.5 | | Aug. 18-31 | | 14 | | 418 | 99 | 2,09 | 90 | 101 | 1,180 | 3,320 | | | | 7,170 | 9.75 | .77 | 1,450 | 1,370 | 76 | 24 | 10,700 | 7.2 | | Sept. 1-9 | | 13 | | 518 | 130 | 2,59 | 90 | 98 | 1,500 | 4,130 | | | | 8,930 | 12.2 | | 1,830 | 1,750 | 76 | 26 | 13,600 | 7.4 | | Sept. 10 | | 15 | | 48 | 9.5 | 7 | 70 | 128 | 61 | 99 | | 4.8 | | b370 | .50 | 29.0 | 159 | 54 | 49 | 2.4 | 649 | 8.1 | | Sept. 11-14 | .68 | 8.8 | | 154 | 31 | 2.5 | 54 | 72 | 441 | 385 | | 3.0 | | 1,310 | 1.78 | 2.41 | 512 | 452 | - 52 | 4.9 | 2,100 | 7.5 | | Sept. 15-30 | a .01 | 9.0 | | 224 | 51 | 50 | 0 | 62 | 675 | 780 | | 4.0 | | 2,270 | 3.09 | .06 | 768 | 718 | 59 | 7.8 | 3,590 | 7.2 | | Weighted average | 35.7 | 13 | | 84 | 23 | 34 | .5 | 126 | 189 | 534 | | | | 1,270 | 1.73 | 122 | 304 | 200 | 71 | 8.6 | 2,120 | | a Includes days of less than 0.05 cubic feet per second discharge. b Calculated from determined constituents. ### COLORADO RIVER BASIN--Continued ### 1470. COLORADO RIVER NEAR SAN SABA, TEX. LOCATION. -- At gaging station at bridge on U. S. Highway 190, 5.2 miles downstream from San Saba River, 9.2 miles east of San Saba, San Saba County, and at mile 474, DRAINAGE AREA. -- 30,600 square miles, approximately, of which 11,900 square miles is probably noncontributing. RECORDS AVAILABLE. -- Chemical analyses: September 1947 to September 1959. Water temperatures: September 1947 to September 1959. Sediment records: December 1950 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 818 ppm May 21-23, 30-31; minimum, 220 ppm Sept. 29-30. Hardness: Maximum, 344 ppm May 21-23, 30-31; minimum, 114 ppm Sept. 29-30. Specific conductance: Maximum daily, 2,010 micromhos July 17; minimum daily, 262 micromhos June 30. Water temperatures: Maximum, 90°F July 4, Aug. 4, 30; minimum, 35°F Dec. 15. EXTREMES, 1947-59.--Dissolved solids: Maximum, 1,530 ppm Oct. 15-19, 1947; minimum, 102 ppm Sept. 23-25, 1955. Hardness: Maximum, 522 ppm Oct. 15-19, 1947; minimum, 71 ppm June 25-30, 1949. Specific conductance: Maximum daily, 3,420 micromhos Sept. 20, 1947; minimum daily, 161 micromhos Sept. 11, 1952. Water temperatures: Maximum, 98°F Aug. 3, 1956; minimum, freezing point Jan. 29, 1948, Jan. 30, 1951. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 2.000 | ssolved so | | | iness
aCO; | Per- | So-
dium | Specific
conduct- | | |----------------------|-------------------------|-------------------------------|------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|----------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | Oct. 1-2, 1958 | 931 | 11 | | 80 | 19 | 12 | | 170 | 125 | 200 | | 2.5 | | a648 | 0.88 | 1,630 | 278 | 138 | 50 | 3.3 | 1,160 | 8.0 | | Oct. 3-10 | 304 | 11 | | 60 | 17 | | 9 | 199 | 49 | 93 | | 2.5 | | 422 | .57 | 346 | 220 | 56 | 37 | 1.7 | 708 | 8.2 | | Oct. 11-20 | 180 | 12 | | 54 | 23 | | 7 | 234 | 37 | 70 | | 2.0 | | 361 | .49 | 175 | 229 | 37 | 31 | 1.3 | 643 | 8.2 | | Oct. 21-31 | 193 | 11 | | 58 | 22 | | 3 | 245 | 40 | 75 | | 2.0 | | 388 | .53 | 202 | 235 | 34 | 33 | 1.5 | 686 | 8.2 | | Nov. 1-10 | 234 | 10 | | 61 | 21 | | 1 | 230 | 51 | 90 | | 3.0 | | 416 | .57 | 263 | 238 | 50 | 36 | 1.7 | 733 | 8.1 | | Nov. 11-20 | 199 | 10 | | 65 | 23 | | 3 | 241 | 62 | 77 | | 2.0 | | 414 | .56 | 222 | 256 | 59 | 31 | 1.4 | 723 | 8.1 | | Nov. 21-30 | 177 | 9.8 | | 69 | 24 | 6 | 7 | 250 | 70 | 97 | | 1.2 | | 468 | .64 | 224 | 270 | 66 | 35 | 1.8 | 812 | 8.2 | | Dec. 1-15 | 177 | 14 | | 62 | 25 | 6 | 9 | 253 | 65 | 92 | | 2.5 | | 466 - | .63 | 223 | 258 | 50 | 37 | 1.8 | 791 | 8.2 | | Dec. 16-31 | 161 | 12 | | 67 | 26 | | 7 | 267 | 67 | 106 | | 2.8 | | 494 | .67 | 215 | 274 | 55 | 38 | 2.0 | 857 | 8.2 | | Jan. 1-11, 1959 | 165 | 9.6 | | 71 | 28 | 77 | 4.2 | 268 | 80 | 112 | 0.3 | 2.2 | | 526 | .72 | 234 | 292 | 72 | 36 | 2.0 | 896 | 8.2 | | Jan. 12-20 | 150 | 8.2 | | 70 | 27 | | 6 | 263 | 75 | 110 | | 2.0 | | 512 | .70 | 207 | 286 | 70 | 37 | 1.9 | 873 | 8.1 | | Jan. 21-31 | 143 | 7.2 | | 61 | 29 | 8 | 5 | 228 | 81 | 130 | | 1.5 | | 520 | .71 | 201 | 271 | 84 | 41 | 2.3 | 914 | 8.2 | | Feb. 1-10 | 124 | 6.8 | | 66 | 29 | 8 | 0 | 260 | 72 | 119 | | 2.0 | | 510 | .69 | 171 | 284 | 70 | 38 | 2.1 | 896 | 8.2 | | Feb. 11-20 | 120 | 5.2 | | 54 | 29 | 6 | 8 | 238 | 60 | 101 | | .5 | | 442 | .60 | 143 | 254 | 58 | 37 | 1.8 | 796 | 8.2 | | Feb. 21-28 | 125 | 6.0 | | 60 | 28 | 6 | 9 | 257 | 60 | 100 | | 1.2 | | 456 | .62 | 154 | 264 | 54 | 36 | 1.9 | 813 | 8.2 | | Mar. 1-10 | 115 | 10 | | 54 | 28 | 6 | 2 | 235 | 54 | 95 | | 2.5 | | 448 | .61 | 139 | 250 | 57 | 35 | 1.7 | 776 | 7.8 | | Mar. 11-20 | 90.4 | 9.0 | | 52 | 27 | 6 | 2 | 241 | 48 | 89 | | 2.0 | | 436 | .59 | 106 | 240 | 43 | 36 | 1.7 | 747 | 7.9 | | Mar. 21-31 | 73.4 | 8.0 | | 51 | 30 | 6 | 1 | 244 | 48 | 94 | | 1.2 | | 438 | .60 | 86.8 | 250 | 50 | 35 | 1.7 | 766 | 7.8 | | Apr. 1-10 | 65.6 | 8.8 | | 51 | 29 | 61 | 4.0 | 249 | 46 | 95 | .2 | .8 | | 440 | .60 | 77.9 | 246 | 42 | 35 | 1.7 | 773 | 8.0 | | Apr. 11-20 | 107 | 14 | | 50 | 33 | 4 | 9 | 250 | 42 | 83 | | 2.5 | | 422 | .57 | 122 | 260 | 56 | 29 | 1.3 | 729 | 7.8 | | Apr. 21-30 | 98.8 | 14 | | 52 | 30 | 6 | 0 | 245 | 47 | 93 | | 2.0 | | 440 | .60 | 117 | 253 | 52 | 34 | 1.6 | 765 | 7.8 | | May 1-11 | 76.4 | 14 | | 47 | 30 | 5 | 1 | 251 | 38 | 75 | | 1.8 | | 390 | .53 | 80.4 | 241 | 36 | 32 | 1.4 | 687 | 7.8 | | May 12-20 | 130 | 14 | | 55 | 29 | 7 | 8 | 258 | 45 | 118 | | 1.5 | | 487 | .66 | 171 | 256 | 44 | 40 | 2.1 | 855 | 7.9 | | May 21-23, 30-31 | 246 | 8.2 | | 82 | 34 | 14 | .9 | 207 | 156 | 2 38 | | .8 | | 818 | 1.11 | 543 | 344 | 175 | 48 | 3.5 | 1,350 | 7.7 | | May 24-29 | 876 | 8.0 | | 70 | 20 | 8 | 1 | 131 | 126 | 136 | | 1.8 | | a507 | .69 | 1,200 | 256 | 149 | 41 | 2.2 | 894 | 7.5 | | June 1-3, 10-12 | 584 | 14 | | 85 | 31 | 15 | 5 | 155 | 170 | 262 | | 2.8 | | a796 | 1.08 | 1,260 | 340 | 212 | 50 | 3.6 | 1,410 | 7.8 | | June 4 | 4,910 | 18 | | 58 | 21 | | 0 | 171 | 86 | 77 | | 2.0 | | a396 | .54 | 5,250 | 231 | 91 | 32 | 1.4 | 674 | 7.7 | | June 5-9 | 9,776 | 13 | | 42 | 7.5 | 3 | 4 | 116 | 32 | 56 | | 2.5 | | 265 | .36 | 6,990 | 136 | 41 | 35 | 1.3 | 435 | 7.6 | | June 13-24 | 229 | 16 | | 59 | 16 | 11 | 4 | 184 | 66 | 169 | | 2.5 | | 567 | .77 | 351 | 213 | 62 | 54 | 3.4 | 953 | 7.9 | | June 25-30, July 1-2 | 2,434 | 14 | | 39 | 8.5 | 2 | 9 | 132 | 25 | 42 | | 2.0 | | 237 | .32 | 1,560 | 132 | 24 | 32 | 1.1 | 391 | 7.6 | | July 3-9 | 479 | 14 | | 52 | 14 | 46 | 5.5 | 151 | 50 | 87 | .3 | 1.5 | | a344 | .47 | 445 | 187 | 64 | 34 | 1.5 | 612 | 7.7 | | July 10-19 | 375 | 9.2 | | 73 | 23 | 18 | 9 | 143 | 130 | 308 | | .5 | | a803 | 1.09 | 813 | 276 | 160 | 60 | 5.0 | 1,470 | 7.6 | | July 20-31 | 6,522 | 13 | | 42 | 6.4 | 2 | 8 | 125 | 20 | 48 | | 1.8 | | 227 | .31 | 4,000 | 131 | 29 | 32 | 1.1 | 380 | 7.4 | | Aug. 1-10 | 419 | 14 | | 44 | 8.3 | 2 | 8 | 140 | 22 | 47 | | 1.8 | | 252 | .34 | 285 | 144 | 29 | 30 | 1.0 | 410 | 7.9 | | Aug. 11-20 | 101 | 14 | | 50 | 16 | | 1 | 188 | 22 | 57 | | .8 | | 286 | .39 | 78.0 | 191 | 37 | 26 | 1.0 | 493 | 7.5 | | Aug. 21-31 | 51.2 | | | 46 | 23 | | 5 | 219 | 23 | 58 | | .2 | | 320 | .44 | 44.2 | 210 | 30 | 27 | 1.0 | 551 | 7.5 | | Sept. 1-10 | 44.3 | | | 38 | 26 | | 7 | 234 | 25 | 60 | | 1.0 | | a331 | .45 | 39.6 | 202 | 10 | 33 | 1.4 | 580 | 8.0 | | Sept. 11-20 | 41.8 | | | 39 | 28 | | 3 | 243 | 24 | 57 | | .8 | | 335 | .46 | 37.8 | 212 | 14 | 30 | 1.3 | 573 | 7.9 | | Sept. 21-28 | 41.8 | | | 44 | 28 | | 4 | 266 | 22 | 56 | | .8 | | a342 | .47 | 38.6 | 225 | 7 | 30 | 1.3 | 606 | 7.7 | | Sept. 29-30 | 1.345 | | | | | | - | 124 | | 42 | | | | | | | 114 | 12 | | | 365 | 7.8 | | E-6-21 E-1 E-1 | | T., | | | | | | | 10 |
70 | | | | 21.5 | - 12 | 501 | | | | | | | | Weighted average | 593 | 13 | | 48 | 12 | 4 | 5 | 148 | 40 | 72 | | 2.0 | | 315 | 0.43 | 504 | 170 | 48 | 3.7 | 1.5 | 536 | | a Calculated from determined constituents. ### COLORADO RIVER BASIN -- Continued ### 1580. COLORADO RIVER AT AUSTIN, TEX. LOCATION.--At raw-water intake at Austin City Water Plant, just downstream from Lamar Street bridge in Austin, Travis County, half a mile downstream from Barton Creek and 4.5 miles upstream from gaging station at Montopolis bridge on U. S. Highway 183. RECORDS AVAILABLE. --Chemical analyses: October 1947 to September 1959. Water temperatures: October 1947 to September 1959. Water temperatures: October 1947 to September 1959. EXTREMES, 1958-59.--Dissolved solida: Naximum, 287 ppm Aug. 5; minimum, 221 ppm Oct. 1-31. Hardness: Maximum, 181 ppm Feb. 1-28, Apr. 1-30; minimum, 164 ppm Oct. 1-31. Specific conductance: Maximum daily, 573 micromhos Jan. 2; minimum daily, 268 micromhos July 14. Water temperatures: Maximum 80°F Sept. 30; minimum, 48°F Jan. 5. EXTERMES, 1947-59.--Dissolved solida: Maximum, 340 ppm Nov. 1-30, 1951; minimum, 184 ppm July 1-31, 1957. Hardness: Maximum, 214 ppm Jan. 1-31, 1954; minimum, 125 ppm June 1, 4-30, 1957. Specific conductance: Maximum daily, 591 micromhos July 1, 1948; minimum daily, 243 micromhos Dec. 2, 1953. Water temperatures: Maximum 87°F on several days during summer months; minimum, 43°F Jan 28, 1946, Feb. 4, 1949. REMARKS.-Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. No appreciable inflow between sampling point and gaging station except during periods of heavy local rains. Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Mean
dis- | Silica | Iron | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved so | | Hard
as C | | Per- | So-
dium | Specific
conduct- | | |------------------------------|-----------------|---------------------|------|--------------|--------------|--------------|--------------|-------------------------------|---------------|----------------|-------------|-----------------------------|------------|------------------------------|------------------------------|-------------------------|---------------------------------|------------------------|--------------|--------------------------|------------------------------|-------------------| | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | Oct. 1-31, 1958
Nov. 1-30 | 1,477
906 | 10
10 | | 44
47 | 13
14 | | 19
19 | 179
190 | 19
22 | 26
24 | 0.1 | 2.0
4.2 | | a221
236 | 0.30 | 881
577 | 164
175 | 17
20 | 20
19 | 0.6 | 387
419 | 8.2 | | Dec. 1-31 | 448
953 | 14
11 | | 40
46 | 16
15 | 22 | 3.3 | 176
188 | 22
25 | 29
32 | .3 | 4.8
7.0 | | 239
274 | .33 | 289
705 | 166
176 | 22
22 | 22
21 | .7 | 413
451 | 8.2
8.1 | | Feb. 1-28
Mar. 1-31 | 986
800 | 9.4
9.8 | | 46
42 | 16
15 | | 23
25 | 190
169 | 26
26 | 32
36 | .3 | 1.8 | | a248
252 | .34 | 660
544 | 181
166 | 25
28 | 21
24 | .7 | 437
431 | 8.2 | | Apr. 1-30
May 1-31 | 1,711 | 9.0
8.6 | | 46
44 | 16
15 | 18 | 3.5 | 182
177 | 25
25 | 31
34 | .3 | 3.8 | | 255
250 | .35 | 1,180
1,580 | 181
172 | 32
26 | 17
22 | .6
.8 | 434
429 | 8.1
8.1 | | June 1-30 | 1,778 | 7.4
9.2 | | 44
42 | 15
15 | | 32
18 | 176
162 | 27
24 | 46
32 | .3 | 2.5 | | 272
245 | .37 | 1,310
1,480 | 172
166 | 28
34 | 29
19 | 1.0 | 474
417 | 7.8
7.0 | | Aug. 1-4, 6-31
Aug. 5 | 3,430 | 9.4 | | 42

40 | 16

16 | | 21

27 | 176
181
177 | 24

24 | 33
58
38 | .3 | 1.0 | | 245
287
250 | .33
.39
.34 | 2,210
2,660
1,710 | 171
175
166 | 27
26
21 | 21

26 | .7

.9 | 414
501
432 | 7.8
7.9
7.9 | | Weighted average | 1,631 | 9.6 | | 43 | 15 | | 23 | 177 | 24 | 34 | 0.2 | 2.3 | | 249 | 0.34 | 1,100 | 169 | 24 | 23 | 0.8 | 428 | | a Calculated from determined constituents. ### COLORADO RIVER BASIN -- Continued ### 1620. COLORADO RIVER AT WHARTON, TEX. LOCATION. -- At gaging station at bridge on U. S. Highway 59 in Wharton, Wharton County, 1,000 feet downstream from Texas & New Orleans Railroad bridge, 12 miles upstream from Jones Creek and at DRAINAGE AREA.--41,380 square miles, approximately, of which 11,900 square miles is probably noncontributing. RECORDS AVAILABLE. -- Chemical analyses: April 1944 to September 1959. Water temperatures: October 1945 to September 1948, March 1950 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 302 ppm Dec. 1-31; minimum, 118 ppm May 24-25. Hardness: Maximum, 210 ppm Dec. 1-31; minimum, 82 ppm May 24-25. Specific conductance: Maximum daily, 604 micromhos Sept. 10; minimum daily, 190 micromhos Apr. 11. Water temperatures: Maximum, 93°F June 18; minimum, 39°F Jan. 5. water temperatures: maximum, 73 r June 10, intrimum, 37 r Jan. 7. EXTREMES, 1944-59. -Dissolved solids: Maximum, 386 ppm Apr. 1-10, 1948; minimum, 108 ppm Sept. 27-29, 1957. Hardness: Maximum, 231 ppm Feb. 1-10, 1947; minimum, 66 ppm Sept. 27-29, 1957. Specific conductance: Maximum daily, 765 micromhos Feb. 5, 1957; minimum daily, 146 micromhos Sept. 27, 1957. Water temperatures (1945-46, 1950-59): Maximum, 95°F July 26, 1954; minimum, 38°F Jan. 17, 1957. REMARKS. -- Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. ### Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Mean | | | Cai- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 1.000 | ssolved sol | | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |--|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|------------------------------|------------| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-31, 1958
Nov. 1-30 | 2,244 | 10 | | 46
50 | 10
11 | 18
18 | 4.2 | 168
176 | 28
32 | 25
26 | | 2.2 | | 249
253 | 0.34 | 1,500
1,580 | 156
170 | 18
26 | 20
18 | 0.6 | 395
431 | 8.0
7.9 | | Dec. 1-31 | 876
1,065 | 6.4
5.8 | | 58
52 | 16
15 | 25
26 | 3.3
3.4 | 218
191 | 36
36 | 37
36 | 0.3 | 3.0
2.5 | | 302
287 | .41 | 714
825 | 210
191 | 32
34 | 20
22 | .8 | 522
490 | 8.0
7.6 | | Feb. 1-28
Mar. 1-31 | 2,504
1,199 | 9.6
LO | | 49
50 | 11
15 | 20
25 | 3.9
3.6 | 166
194 | 34
37 | 28
35 | | 2.8 | | 250
298 | .34 | 1,690
965 | 168
186 | 32
28 | 20
22 | . 7 | 417
487 | 8.1
8.2 | | Apr. 1-9, 23-30
Apr. 10-11, 14, 19-20
Apr. 12-13, 15-18, | 1,954 | 9.6
12 | | 50
30 | 13
3.1 | 24
6.8 | 3.8 | 182
98 | 36
11 | 35
8.2 | | 2.5 | | 270
a 125 | .37 | 1,420
5,700 | 178
88 | 30
7 | 22
14 | .8 | 462
217 | 7.8
7.6 | | 21-22 | 12,090 | 12 | | 38 | 4.6 | 11 | 3.6 | 115 | 25 | 14 | | 3.2 | | a 168 | .23 | 5,480 | 114 | 20 | 1.7 | .4 | 292 | 7.5 | | May 1-23, 26-31
May 24-25 | 2,638
8,820 | 11 | | 48
26 | 13 4.1 | 20
7.9 | 3.2
2.6 | 176
93 | 28
7.6 | 31
11 | | 3.2
1.8 | | 254
a 118 | .35 | 1,810
2,810 | 174
82 | 30
6 | 20
17 | .7 | 439
204 | 7.4 | | June 1-30 July 1-31 | 1,837
1,260 | 11 | | 38
39 | 13 | 20
21 | 3.3 | 152
156 | 26
28 | 30
35 | .2 | 1.2 | | 226
242 | .31 | 1,120
823 | 148
159 | 24
31 | 22
22 | .7 | 390
410 | 7.6
7.0 | | Aug. 1-31 | 2,597
2,563 | 11
13 | | 44
42 | 15
15 | 21
24 | 3.4
3.6 | 175
175 | 26
28 | 38
38 | | 2.2
1.5 | | 255
254 | .35 | 1,790
1,760 | 172
166 | 28
23 | 21
23 | .7 | 432
446 | 7.8
7.8 | | Weighted average | 2,372 | 11 | | 43 | 11 | 18 | 3.5 | 159 | 2.7 | 27 | | 2.5 | | 231 | 0.31 | 1,480 | 152 | 22 | 20 | 0.6 | 393 | | a Calculated from determined constituents. ### COLORADO RIVER BASIN--Continued ### MISCELLANEOUS ANALYSES OF STREAMS IN COLORADO RIVER BASIN IN TEXAS | | | | | | Chem | ical anal | yses, i | n parts p | er milli | on, water | year Oc | cober 1 | 958 to | September | 1959 | | | | | | | | |--------------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------
-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|----------------------------------|--------------------------------------|-----| | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | issolved so | | Hard
as Co | dness
aCO ₃ | Per- | So- | Specific
conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₂) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | dium
adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | рН | | | | | | | | | | 1180. | LAKE J. | в. тнома | S NEAR V | INCENT | | | | | | | | | | | | Aug. 12, 1959 | | 2.6 | 0.00 | 32 | 7.2 | 6 | 5 | 169 | 62 | 32 | 0.9 | 0.2 | | 285 | 0.39 | | 110 | 0 | 56 | 2.7 | 477 | 7.4 | | | | | | | | , | 1 | 1230. LA | KE COLOR | ADO CITY | NEAR COL | ORADO C | ITY | | | | | | • | | | | | Nov. 6, 1958 | | 3.9 | | 39 | 8.4 | 3 | 7 | 164 | 38 | 26 | 0.5 | 0.1 | | a241 | 0.33 | | 132 | 0 | 38 | 1.4 | 411 | 8.2 | | | | | | | | | | 1255. 0 | AK CREEK | RESERVOI | R NEAR B | LACKWEL | L | | | | | | | | | | | Nov. 6, 1958 | | 1.6 | | 44 | 9.2 | 1 | 3 | 134 | 35 | 21 | 0.1 | 0.2 | | 190 | 0.26 | | 148 | 38 | 16 | 0.5 | 350 | 7.9 | | | | | | | | | | 1265 | COLOR | ADO RIVER | AT BALL | INGER | | | | | | | | | | | | June 20, 1959 | 1 10 | | | 77 | 24 | 10 | | | | | | | | T - 221 | T | | | | | | | | | June 20, 1939 | 1 10 | 6.4 | | 1_// | 24 | 18 | 2 / | 104 | 203 | 275 | | 0.2 | | a831 | 1.13 | | 290 | 206 | 58 | 4.6 | 1,410 | 6.7 | | | | | | | | | | 1320. | LAKE NA | SWORTHY N | EAR SAN | ANGELO | | | | | | | | | | | | Nov. 6, 1958 | | 7.6 | | 56 | 14 | 3 | 9 | 210 | 27 | 56 | 0.3 | 1.0 | | a310 | 0.42 | | 197 | 25 | 30 | 1.2 | 549 | 7.9 | | | | | | | | | | 1345. S. | AN ANGEL | O RESERVO | IR AT SA | N ANGEL | 0 | | | | | | | | | | | Nov. 6, 1958 | | 1.3 | | 40 | 7.2 | 1 | 0 | 158 | 8.4 | 9.5 | 0.1 | 0.4 | | a162 | 0.22 | | 129 | 0 | 15 | 0.4 | 290 | 8.0 | | | | | | | | | SOUTH I | ORK JIM | NED CREE | K AT US H | IGHWAY 8 | 4 NEAR | GOLDSBO | RO | | | | | | | | | | June 21, 1959 | | 9.4 | | 65 | 7.7 | 3 | 0 | 170 | 9.6 | 76 | 0.2 | 1.5 | | 283 | 0.38 | | 194 | 54 | 2.5 | 0.9 | 525 | 7.8 | | | | | | | | | | ROUGH CRE | EK AT US | HIGHWAY | 84 NEAR | GOLDSBO | RO | | | | | | | | | | | June 21, 1959 | ь0 | 7.8 | | 39 | 3.6 | 2.9 | 4.9 | 141 | 3.0 | 2.8 | 0.1 | 1.8 | | 135 | 0.18 | | 1112 | 0 | 5 | 0.1 | 234 | 7.0 | | | | | | | 3,10 | | | | | DS CREEK | | | | 1 133 | | | | | | | | | | June 21, 1959 | . 0 | 7.8 | | 53 | 15 | 2 | 1 | 216 | 1 24 | 25 | 0.2 | 1.0 | | 253 | 0.34 | | 194 | 17 | 19 | 0.7 | 448 | 7.6 | | June 21, 1999 | 1 0 | 1.0 | | 1 22 | 1 13 | | - | | 22 22222 | | | | | 1 233 | 1 0.34 | | 194 | 17 | 17 | 0.7 | 1 440 | 7.0 | | | | | | | | | | | | N BAYOU A | | | | | | | | | | | | | | June 21, 1959 | 0.2 | 12 | | 61 | 9.6 | 3 | 0 | 191 | 39 | 42 | 0.2 | 1.2 | | a294 | 0.40 | | 192 | 35 | 26 | 0.9 | 494 | 7.8 | | | | | | | | | | 144 | 5. SAN | SABA RIVE | R AT MEN | ARD | | | | | | | | | | | | Nov. 5, 1958 | 12 | 16 | | 66 | 23 | 2 | 0 | 301 | 18 | 25 | 0.3 | 1.8 | | 318 | 0.43 | | 259 | 12 | 14 | 0.5 | 548 | 8.0 | a Residue on evaporation at 180°C . b Field estimate. Chemical analyses, in parts per million, water year October 1958 to September 1959 -- Continued | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | 1 | solved sol | | | dness
αCO ₃ | Per- | So-
dium | Specific
conduct- | | |--------------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | | | | | | | | | 1460 | . SAN SA | ABA RIVER | AT SAN | SABA | | | | | | | | | | | | pr. 21, 1959 | 76 | 12 | | 54 | 27 | 2 | 0 | 281 | 22 | 25 | 0.2 | 1.5 | | a306 | 0.42 | | 246 | 1.5 | 15 | 0.6 | 543 | 7.7 | | | | | | | | | | CUMMINS | CREEK AT | FM ROAD 1 | 109 NEAR | COLUMB | US | | | | | | | | | | | dar. 17, 1959 | | 16 9.0 | | 68 | 4.3 | 8.2 | 3.2 | 211
92 | 20
6.0 | 34
12 | 0.3 | 0.0 | | a280
117 | 0.38 | | 187
81 | 14 | 23
17 | 0.8 | 470
212 | 7.7 | | | | | | | | | COI | ORADO RI | VER AT U | HIGHWAY | 90A NEA | R EAGLE | LAKE | | | | | | | | | | | Apr. 26, 1959 | - | 12 | | 61 | 12 | 2 | 0 | 207 | 32 | 28 | 0.3 | 2.8 | | 270 | 0.37 | | 202 | 32 | 18 | 0.6 | 478 | 7.8 | | | | | | | | | | | EAGLE L | AKE AT EAG | GLE LAKE | | | | | | | | | | | | | pr. 26, 1959 | - 60 | 17 | | 40 | 7.2 | | .2 | 153 | 10 | 14 | 0.2 | 0.2 | | 176 | 0.24 | | 129 | 4 | 17 | 0.5 | 314 | 6.7 | | | | | | | | | | 1625. | COLORA | OO RIVER 1 | NEAR BAY | CITY | | | | | | | | | | | | pr. 25, 1959 | - 3,160 | 111 | | 54 | 9.7 | 2 | 22 | 1.77 | 36 | 26 | 0.2 | 2.5 | | 248 | 0.34 | | 175 | 30 | 21 | 0.7 | 439 | 7.3 | a Residue on evaporation at $180\,^{\rm o}{\rm C}$. b Field estimate. MISCELLANEOUS ANALYSES OF STREAMS IN LAVACA RIVER BASIN IN TEXAS | | - | | | Cal- | Mag- | ģ | Po- | Bicar- | Sul- | Chlo- | Fluo- | ż | - Bo | Dis
(ca | Dissolved solids
(calculated) | sp | Hardness
as CaCO. | CO, | Per- | So- | Specific
conduct- | | |---------------|-------------------------|-------------------------------|--------------|--------------|--------------|--------------|-------------|-------------------------------|---------------|--|-------------|-----------------------------|---------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|-----| | | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₁) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | (B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | | | | | | | | | 1635. | LAVACA | 1635. LAVACA RIVER AT HALLETTSVILLE | HALLET | LSVILLE | | | | | | | | | | | | Apr. 10, 1959 | 1,480 | 11 | | 30 | 1.5 | 11 | | 92 | 11 | 9.5 | | 4.5 | | 124 | 0.17 | | 81 | 9 | 22 | 0.5 | 221 | 7.5 | | | | | | | | | | BRUSHY | CREEK AT | BRUSHY CREEK AT US HIGHWAY 77 NEAR YOAKUM | AX 77 NR | EAR YOAKI | W | | | | | | | | | | | Apr. 10, 1959 | | 7.8 | | 35 | 3.1 | 26 | | 101 | 14 | 05 | | 7.7 | | 180 | 0.24 | | 100 | 17 | 36 | 1.1 | 341 | 7.3 | | | | | | | | | NAV | TIDAD RIV | ER AT US | NAVIDAD RIVER AT US HIGHWAY 77 NEAR SCHULENBERG | 77 NEAR | SCHULEN | BERG | | | | | | | | | | | Apr. 10, 1959 | | 11 | | . 30 | 1.2 | 9.9 | 3.9 | 46 | 9.9 | 6.5 | | 2.5 | | 116 | 0.16 | | 80 | 0 | 14 | 0.3 | 200 | 7.5 | | | | | | | | | NAV | TIDAD RIV | ER AT US | NAVIDAD RIVER AT US HIGHWAY 90A NEAR HALLETTSVILLE | 90a NEA | R HALLET | TSVILLE | | | | | | | | | | | Apr. 26, 1959 | | 23 | | 138 | 2.7 | 65 | 3.8 | 607 | 30 | 95 | 7.0 | 1.2 | | 260 | 0.76 | | 356 | 20 | 28 | 1.5 | 915 | | ### GUADALUPE RIVER BASIN ### 1765. GUADALUPE RIVER AT VICTORIA, TEX. LOCATION. --At gaging station at bridge on U. S. Highway 59 in Victoria, Victoria County, 1300 feet upstream from Texas & New Orleans Railroad bridge, 10 miles upstream from Coleto Creek, and at mile 51. DRAINAGE AREA. -- 5,161 square miles. RECORDS AVAILABLE .-- Chemical analyses: October 1945 to September 1946, October 1948 to September 1959. Water temperatures: November 1950 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 376 ppm Mar. 1-10; minimum, 216 ppm May 23-26. Hardness: Maximum, 252 ppm Dec. 21-31; minimum, 148 ppm Apr. 9-20. Hardness: Maximum, 252 ppm Dec. 21-31; minimum, 148 ppm Apr. 9-20. Specific conductance: Maximum daily, 801 micromhos Jan. 23; minimum daily, 298 micromhos Apr. 16. Water temperatures: Maximum, 86°F Aug. 5-6; minimum, 46°F Jan. 5. EXTREMES, 1945-46, 1948-59. "Dissolved solids: Maximum, 1,040 ppm Jan. 11-17, 1946; minimum, 134 ppm Oct. 17-21, 1957. Hardness: Maximum, 428 ppm Jan. 11-17, 1946; minimum, 86 ppm Oct. 23-31, 1956. Specific conductance: Maximum daily, 1,950 micromhos Jan. 11-17, 1946; minimum daily, 184 micromhos Oct. 24, 1956. Water temperatures (1950-59): Maximum, 90°F Aug. 4, 27, 1952; minimum daily, 184 micromhos Oct. 24, 1956. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Faper 1632. | | Mean | | | | Mag- | | Po- | | | | | | | | solved sol | | Hard
as Co | | | So- | Specific | |
---|---|---|--------------|--|--|--|---|---|--|--|----------------------|---|------------|--|---|---|---|--|--|----------------------------------|--|---| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | Cal-
cium
(Ca) | ne-
sium
(Mg) | So-
dium
(Na) | tas-
sium
(K) | Bicar-
bonate
(HCO ₁) | Sul-
fate
(SO,) | Chlo-
ride
(CI) | Fluo-
ride
(F) | Ni-
trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons per acre- foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | Per-
cent
so-
dium | dium
adsorp-
tion
ratio | conduct-
ance
(micro-
mhos at
25° C) | pH | | Oct. 1-10, 1958 Oct. 11-20 Oct. 21-28 Oct. 29-31, Nov. 1-10 Nov. 11-20 Nov. 21-30 | 1,615
1,436
3,112
1,884 | 15
18
17
14
17 | | 50
64
70
57
64
70 | 10
15
16
12
15 | 16
23
23
17
20
25 | 3.5
2.8
2.5
2.9
2.4
2.3 | 184
232
255
200
238
260 | 20
27
27
25
25
28 | 24
33
32
24
27
35 | | 3.8
6.2
8.3
5.5
7.3
7.3 | | a232
322
332
274
303
338 | 0.32
.44
.45
.37
.41
.46 | 1,330
1,400
1,290
2,300
1,540
1,470 | 166
221
240
192
221
244 | 15
31
32
28
26
32 | 17
18
17
16
16
18 | 0.5
.7
.6
.5
.6 | 406
530
560
446
523
574 | 7.9
7.7
7.8
7.9
8.1
7.9 | | Dec. 1-10 Dec. 11-20 Dec. 21-31 Jan. 1-10, 1959 Jan. 21-31 Jan. 21-31 | 1,393
1,465
1,363
1,251 | L5
L4
L4
L5
L3
L2 | | 70
57
73
73
55
67 | 18
18
17
16
18
18 | 26
25
26
29
28
31 | 2.3
2.1
2.3
2.3
1.7 | 264
228
274
277
225
259 | 29
30
28
29
27
32 | 36
37
37
41
42
46 | 0.3 | 7.5
7.7
7.0
6.7
7.7
7.4 | | 344
315
356
366
304
a342 | .47
.43
.48
.50
.41 | 1,380
1,180
1,410
1,350
1,030
1,110 | 248
216
252
248
211
241 | 32
29
28
21
26
28 | 18
20
18
20
22
22 | .7
.7
.7
.8
.8 | 586
535
592
609
550
616 | 7.9
8.1
8.1
8.1
8.2
7.9 | | Feb. 1-10 | 2,510
1,686
1,523
1,245 | 15
15
14
15
15
15 | | 58
54
64
72
71
64 | 15
12
13
16
17
18 | 29
30
26
33
33
30 | 2.8
3.3
3.1
2.8
2.4
2.2 | 223
189
219
257
262
249 | 29
31
36
39
35
32 | 42
42
34
48
50
42 | | 4.9
4.2
5.8
6.1
6.3
5.0 | | 310
294
312
376
372
338 | .42
.40
.42
.51
.51 | 1,380
1,990
1,420
1,550
1,250 | 206
184
213
246
247
234 | 24
29
34
35
32
30 | 23
26
21
22
22
22 | .9
1.0
.8
.9
.9 | 537
506
524
617
633
576 | 8.1
8.1
8.0
8.1
8.2
8.1 | | Apr. 1-8 | 5,634
2,228
1,755
1,463
1,246 | 12
13
15
15
15
14
9.6 | | 56
46
57
68
70
64
46 | 18
8.0
11
15
15
15
9.1 | 28
20
22
29
30
29
19 | 2.3
3.7
4.0
3.0
2.5
2.8
3.0 | 226
153
194
236
242
233
164 | 33
25
30
34
36
31
19 | 42
28
33
43
42
41
27 | | 4.8
3.0
3.2
5.4
6.1
4.6
2.5 | | 318
235
285
348
352
332
a216 | .43
.32
.39
.47
.48
.45 | 992
3,570
1,710
1,650
1,390
1,120
1,610 | 214
148
187
231
236
221
152 | 28
22
28
38
38
30
18 | 22
22
20
21
21
22
21 | .8
.7
.7
.8
.8
.8 | 539
389
466
582
588
559
393 | 8.1
7.7
8.0
7.3
7.3
7.4
7.6 | | June 1-9 | 965
1,295
1,825
990 | 17
16
16
18
18 | | 66
62
58
54
58
66 | 18
14
15
10
13
14 | 31
30
30
18
19
25 | 2.4
2.7
2.3
2.8
2.8
2.6 | 246
230
228
198
222
246 | 33
33
30
22
21
27 | 46
40
39
22
25
34 | | 4.4
3.6
3.0
4.7
4.0
4.1 | | 360
320
310
256
280
322 | .49
.44
.42
.35
.38 | 1,120
834
1,080
1,260
748
935 | 238
212
206
176
198
222 | 37
24
19
13
16
20 | 22
23
24
18
17 | .9
.9
.9
.6
.6 | 584
541
530
429
462
537 | 7.4
8.0
7.9
7.5
7.7
7.7 | | Aug. 1-4 | 825
824
807
715 | 20
19
18
20
20
18 | | 60
55

60
61
59 | 17
15
17
18
17 | 27
24
28
27
27
27 | 2.9
2.8
2.7
2.5
2.4
2.3 | 233
215

236
241
237 | 28
27
29
30
29
30 | 44
37
44
39
38
38 | | 4.0
2.5
2.5
3.0
2.5
2.8 | | 318
a288

320
316
a311 | .43
.39

.44
.43 | 716
642

697
610
584 | 220
198

224
222
217 | 28
22

30
24
23 | 21
20

21
21
21 | .8
.7
.8
.8 | 531
480
- 525
540
- 531
523 | 7.4
7.5

7.2
7.9
7.4 | | Weighted average | 1,580 | 15 | | 60 | 14 | 25 | 2.8 | 219 | 28 | 35 | | 5.0 | | 303 | 0.41 | 1,290 | 207 | 28 | 21 | 0.8 | 511 | | a Calculated from determined constituents. LOCATION . -- At gaging station at bridge on U. S. Highway 183, 1.3 miles southeast of Courthouse in Goliad, Goliad County, and 10 miles upstream from Manahuilla Creek. DRAINAGE AREA .-- 3,918 square miles. RECORDS AVAILABLE .-- Chemical analyses: September 1945 to September 1946, September 1958 to September 1959. Water temperatures: September 1958 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 808 ppm Sept. 18; minimum, 159 ppm Oct. 30-31, Nov. 1. Hardness: Maximum, 362 ppm Mar. 21-31; minimum, 96 ppm Oct. 30-31, Nov. 1. Specific conductance: Maximum daily, 1,390 micromhos Apr. 3; minimum daily, 260 micromhos Oct. 31. Specific conductance: Maximum daily, 1,390 micromhos Apr. 3; minimum daily, 260 micromhos Oct. 31. Water temperatures: Maximum, 87°F Sept. 21; minimum, 45°F Jan. 4. EXTREMES, 1945-46, 1958-59.—Dissolved solids: Maximum, 808 ppm Sept. 18, 1959; minimum, 159 ppm Oct. 30-31, Nov. 1, 1958. Hardness: Maximum, 362 ppm Mar. 21-31, 1959; minimum, 96 ppm Oct. 30-31, Nov. 1, 1958. Specific conductance: Maximum daily, 1,390 micromhos Apr. 3, 1959; minimum daily, 208 micromhos Apr. 24, 1946. Water temperatures (1958-59): Maximum, 87°F Sept. 21, 1959; minimum, 45°F Jan. 4, 1959. REMARKS.--Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. | | | | | | Chemi | cal ana | lyses, i | n parts p | er milli | on, wate | r year Oo | tober 1 | 958 to S | September | 1959 | | | | | | | | |---|---|--|------|--|---|--------------|---|---|---------------------------------------|---|---|-----------------------------------|--|---|---|---|---|---|--|--|---|---| | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Car- | Sul- | Chlo- | Fluo- | Ni- | | solved so | | Hard
as C | dness
aCO ₁ | Per- | So-
dium | Specific
conduct- | | | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₁) | bonate
(CO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-10, 1958 Oct. 11-20 Oct. 21-29 Oct. 30-31, Nov. 1 Nov. 2-10 Nov. 21-30 | 1,291
824
894
4,403
2,419
1,296
836 | 15
16
18
15
16
16 | | 60
74
76
31
60
74
83 |
12
15
15
4.5
12
15
18 | | 35
42
48
17
25
33
43 | 192
227
230
102
189
233
256 | 0
3
4
0
0
0
8 | 51
64
65
21
45
57
68 | 41
52
60
16
32
42
51 | 0.3
.3
.3
.2
.2
.2 | 7.0
6.1
7.8
4.2
6.9
8.3
9.6 | 322
392
419
al59
298
368
434 | 0.44
.53
.57
.22
.41
.50 | 1,120
872
1,010
1,890
1,950
1,290
980 | 199
246
251
96
199
246
281 | 42
55
62
12
44
55
58 | 28
27
29
27
21
22
25 | 1.1
1.2
1.3
.7
.8
.9 | 528
635
676
271
485
601
694 | 8.2
8.3
8.3
7.8
8.0
8.1
8.4 | | Dec. 1-10 | 662
575
516
504
459
434 | 17
17
20
20
19
18 | | 90
94
96
95
100
101 | 19
21
21
19
20
22 | 73 | 58
67
87
1
5.
81 | 286
291
275
285
304
286 | 4
8
20
11
7
15 | 77
82
90
92
98
101 | 68
83
107
90
94
96 | .4
.4
.4
.4
.4 | 12
13
13
13
15
18 | 499
544
604
571
602
604 | .68
.74
.82
.78
.82
.82 | 892
845
841
777
746
708 | 302
321
326
315
332
342 | 62
69
67
63
71
83 | 29
31
37
33
35
34 | 1.4
1.6
2.1
1.8
1.9 | 797
879
965
909
955
956 | 8.3
8.3
8.7
8.5
8.4
8.5 | | Feb. 1-10 | 504
592
466
398 | 23
23
22
22
21
19 | | 98
96
89
96
103
107 | 19
19
18
19
20
23 | | 78
75
76
81
88
89 | 294
281
277
285
312
310 | 0
7
6
7
0
4 | 97
94
85
95
101
111 | 96
90
87
97
111
118 | .5
.4
.6
.6 | 15
14
14
14
14
14 | 589
568
545
597
637
660 | .80
.77
.74
.81
.87 | 743
773
871
751
685
602 | 322
318
296
318
339
362 | 82
76
59
72
84
101 | 34
34
36
36
36
36 | 1.9
1.8
1.9
2.0
2.1
2.0 | 942
910
886
938
1,010
1,050 | 8.1
8.3
8.4
8.4
8.2
8.3 | | Apr. 1-9-12-13, 15-17 Apr. 10, 12-13, 15-17 Apr. 11, 14, 18-21 Apr. 22-30 May 1-2 | 869
406
370
1,757
541 | 20
16
19
20
21
20
16
20 | | 104
55
74
98
101
46
74
92
63 | 24
10
15
22
22
7.0
16
20
12 | 90 | 1 6.
44
73
77
100
40
54
78
55 | 1 310
168
217
297
280
133
218
286
199 | 0
0
0
0
19
2
2
0 | 115
51
78
102
109
52
75
94
62 | 127
52
96
101
122
39
70
96
64 | .4 .4 .5 .5 .4 .4 .5 .4 | 13
11
12
11
14
9.1
11
13
8.2 | 689
353
505
606
703
a280
a425
605
412 | .94
.48
.69
.82
.96
.38
.58 | 686
1,100
1,180
664
702
1,330
621
735
603 | 358
178
246
335
342
144
250
312
206 | 104
40
68
92
82
31
68
77
44 | 35
35
39
33
39
38
32
35
36 | 2.1
1.4
2.0
1.8
2.4
1.4
1.5
1.9 | 1,070
560
809
960
1,050
475
729
932
658 | 8.1
7.8
7.7
8.0
8.5
8.3
8.3
8.2
8.0 | | June 1-5, 8-12 June 6-7 | 757
243
535
478
272 | 21
17
20
15
20
21
21 | | 89
43
101
74
72
87
92 | 17
5.8
23
16
16
20
20 | | 89
28
108
78
58
65
86 | 273
148
305
227
226
260
278 | 0 0 0 0 0 0 | 97
25
125
86
73
93
107 | 106
28
136
97
71
88
107 | .5
.3
.5
.4
.4
.4 | 11
5.7
9.4
7.9
11
6.7
8.2 | 586
a226
688
517
459
556
609 | .80
.31
.94
.70
.62
.76 | 544
462
451
747
592
408
459 | 292
131
346
250
246
299
312 | 68
10
96
64
60
86
84 | 40
32
40
40
34
32
38 | 2.3
1.1
2.5
2.1
1.6
1.6
2.1 | 921
397
1,100
829
717
826
947 | 8.1
8.0
7.9
7.6
7.8
7.9
7.8 | | Aug. 1-10 | 204
247
243
226
199 | 20
24
23
23
23
23 | | 90
86
92
78
92
 | 22
22
21
18
19 | | 82
88
93
73
90
 | 276
267
290
246
284
269
283 | 0
0
0
0
0 | 99
109
106
90
104
 | 110
110
114
87
107
216
114 | .5
.5
.4
.6 | 10
9.2
10
9.7
11 | 598
602
627
516
610
808
605 | .81
.82
.85
.70
.83
1.10 | 342
332
418
339
372
434
363 | 315
305
316
268
308
290
302 | 89
86
78
67
75
70 | 36
39
39
37
39

40 | 2.0
2.2
2.3
1.9
2.2 | 939
936
978
813
960
1,300
988 | 7.9
7.9
8.0
8.1
8.0
8.1
7.8 | | Weighted average | 597 | 1.8 | | 77 | 16 | | 57 | b242 | | 73 | 70 | 0.4 | 10 | 457 | 0.62 | 737 | 258 | 60 | 32 | 1.5 | 732 | | a Calculated from determined constituents. b Includes equivalent of individual carbonate values shown above. GUADALUPE RIVER BASIN--Continued # MISCELLANEOUS ANALYSES OF STREAMS IN GUADALUPE RIVER BASIN IN TEXAS | | Mean | | | 3 | Mag- | ŝ | Po | Bicar- | Sul- | Chlo | Fluo | ž | Bo- | Dia
(c. | Dissolved solids
(calculated) | sbi | Hardness
as CaCO, | rco, | Per- | -S | Specific
conduct- | | |--------------------|-------------------------|-------------------------------|--------------|--------------|--------------|--------------|--|-------------------------------|---------------|---|-------------|----------------|------------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|-----------|--------------------------|--------------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO.) | ride
(CI) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | dium sent | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hd | | | | | | | | | | 1720. | SAN M | SAN MARCOS RIVER AT LULING | TER AT LI | TLING | | | | | | | | | | | | Feb. 25, 1959 | 340 | 11 | | 80 | 17 | | 52 | 357 | 24 | 45 | 0.2 | 0.0 | | 405 | 0.55 | | 270 | 0 | 29 | 1.4 | 206 | 7.4 | | | | | | | | | | 1 | 724. PL | 1724. PLUM CREEK AT LOCKHART | AT LOCK | TART | | | | | | | | | | | | Feb. 25, 1959 | | 18 | | 76 | 5.4 | | 76 | 283 | 71 | 67 | 1.1 | 23 | | 767 | 0.67 | | 256 | 24 | 39 | 2.1 | 826 | 7.4 | | | | | | | | | | 1835. | SAN ANTO | SAN ANTONIO RIVER NEAR FALLS CITY | R NEAR FA | ALLS CIT | 7 | | | | | | | | | | | Apr. 10, 1959 | 433 | 16 | Ц | 06 | 20 | | 19 | a264 | 96 | 75 | 0.3 | 22 | | 208 | 69.0 | | 306 | 06 | 30 | 1.5 | 852 | 8.5 | | | | | | | | ы | ECLETO CREEK AT STATE HIGHWAY 123 TWELVE MILES SOUTH OF SECUIN | EK AT ST | ATE HIGH | WAY 123 ' | IMELVE M. | ILES SOU | TH OF SE | EGUIN | | | | | | | | | | May 4, 1959 | | 10 | | 12 | 3.7 | 10 | 4.5 | 74 | 0.2 | 4.0 | 0.1 | 0.5 | | 81 | 0.11 | | 45 | 0 | 30 | 9.0 | 141 | 6.3 | | | | | | | | | | .870. ES | CONDIDO | 1870. ESCONDIDO RESERVOIR NO. 1 NEAR KENEDY | R NO. 1 1 | NEAR KEN | EDY | | | | | | | | | | | Feb. 10, 1959 | | 1.9 | 9 | 33 | 2.8 | 6.8 | 6.5 | 120 | 7.2 | 4.8 | 0.4 | 3.2 | | 126 | 0.17 | | 76 | 0 | 13 | 0.3 | 236 | 7.5 | | | | | | | | | | 187 | 5. ESCO | 1875. ESCONDIDO CREEK AT KENEDY | SEK AT KI | ENEDY | - | | | | | | | | | | | 1 | MISSION RIVER BASIN MISCELLANEOUS ANALYSES OF STREAMS IN MISSION RIVER BASIN IN TEXAS 4.2 1,220 7.7 Hd Specific conduct-ance (micro-mhos at 25° C) 57 Per-cent so-dium 44 Hardness as CaCO, Cal-cium, magne-sium 250 Tons per day Dissolved solids (calculated) Tons per acre-foot 0.88 Chemical analyses, in parts per million, water year October 1958 to September 1959 Parts per mil-lion 779 Bo-Ni-trate (NO,) 250 24 250 0.4 0.0 NEDIO CREEK AT US HIGHWAY 181 NEAR BEEVILLE Fluo-ride (F) Chlo-ride (CI) Sul-fate (SO,) Bicar-bonate (HCO₁) Po-tas-sium (K) 154 So-dium (Ng) Mag-ne-sium (Mg) 17 Cal-cium (Ca) 72 Iron (Fe) Silica (SiO₂) 3.4 Mean dis-charge (cfs) Мау 3, 1959----Date of collection ARANSAS RIVER BASIN MISCELLANDOUS ANALYSES OF STREAMS IN ARANSAS RIVER BASIN IN TEXAS | | | | | | | chemical analyses, in pairs per milital, water year occopier 1750 to september 1757 | 353, 41 | Mar Co P | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | out, water | Year o | Tanna | 220 00 | Januar dac | 1222 | | | | | | | | |--------------------|-----------------|---------------------|------|--------------|--------------|---|-------------|-------------------------------|--|---|-------------|--------------------|------------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|-----| | | Mean | į | | 3 | Mag- | Š | P. | Bicar- | Sul- | Chlo- | Fluo- | Ä | è. | Diss. | Dissolved solids
(calculated) | | Hardness
as CaCO, | 20, | Per- | So- | Specific
conduct- | | | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) |
Sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | (NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | На | | | | | | | | | PAP | ALOTE CRI | ZEK AT US | PAPALOTE CREEK AT US HIGHMAY 181 NEAR SKIDWORE | 181 NE. | AR SKIDN | IORE | | | | | | | | | | | May 3, 1959 | | 30 | | 80 | 9.5 | 25 | | 313 | 4.9 | 20 | 0.3 | 0.2 | | 325 | 0.44 | | 238 | 0 | 1.8 | 0.7 | 553 | 7.1 | | | | | | | | | ARANSA | S RIVER | AT WELDER | ARANSAS RIVER AT WELDER WILDLIPE REPUGE NEAR SINTON | E REFUG | E NEAR S | NOTNIS | | | | | | | | | | | Mar. 14, 1959 | | 11 | | 07 | 8.2 | 89 | | 125 | 91 | 146 | 0.2 | 3.0 | | 374 | 0.51 | | 134 | 31 | 59 | 3.4 | 720 | 6.9 | | | - | | | | | | | | | | | | | | | - | | | 1 | | | | ### NUECES RIVER BASIN ### 2110. NUECES RIVER NEAR MATHIS, TEX. LOCATION.--At intake tower at Wesley Seale Dam, 0.6 mile upstream from gaging station at bridge on State Highway 359, and 4 miles southwest of Mathis, San Patricio County. DRAINAGE AREA.--16,660 square miles. RECORDS AVAILABLE.--Chemical analyses: October 1947 to September 1959. Water temperatures: October 1947 to September 1959. EXTREMES, 1958-59.--Dissolved solids: Maximum, 362 ppm Aug. 1-31; minimum, 237 ppm Nov. 1-30. Hardness: Maximum, 174 ppm May 1-31; minimum, 136 ppm Nov. 1-10. Specific conductance: Maximum daily, 699 micromhos July 21; minimum daily, 370 micromhos Nov. 15. Water temperatures: Maximum, 91°F Aug. 8-9; minimum, 48°F Jan. 5-9. EXTREMES, 1947-59.--Dissolved solids: Maximum, 548 ppm June 1-30, 1948; minimum, 175 ppm Apr. 27-30, 1949. Hardness: Maximum, 201 ppm May 1-24, 1951; minimum, 85 ppm Apr. 27-30, 1949. Water temperatures: Maximum, 94°F Aug. 8-9; minimum, 48°F Jan. 1948. REMARKS.--Records of specific conductance: Maximum, 94°F July 27, 1948; minimum, 38°F Jan. 31, 1948. REMARKS.---Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for water year October 1958 to September 1959 given in Water-Supply Paper 1632. ### Chemical analyses, in parts per million, water year October 1958 to September 1959 | | Mean
dis- | Silica | Iron | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | ssolved so | | Hare
as C | | Per- | So-
dium | Specific
conduct- | | |------------------------------|-----------------|---------------------|------|----------|---------------------|--------------|-------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|-------------|--------------------------|------------------------------|------------| | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | (Ca) | ne-
sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₁) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | Oct. 1-31, 1958
Nov. 1-30 | | 20
16 | | 53
46 | 5.3 | 26
22 | 8.3 | 189
168 | 22
21 | 27
24 | 0.1 | 1.5 | | 280
237 | 0.38 | 3,150
2,160 | 154
136 | 0 | 26
25 | 0.9 | 430
386 | 8.1 | | Dec. 1-31 | | 15
17 | | 48
51 | 5.5
6.0 | 26
31 | 6.3
6.1 | 172
182 | 24
28 | 2 7
3 4 | .2 | 2.5 | | 254
276 | .35 | 223
294 | 142
152 | 2 2 | 2 7
30 | .9
1.1 | 410
450 | 8.0
8.0 | | Feb. 1-28
Mar. 1-31 | | 14
14 | | 54
54 | 6.3
7.1 | 30
34 | 6.2
6.5 | 190
194 | 28
30 | 35
39 | .2 | 1.5 | | 285
296 | .39
.40 | 119
88.7 | 160
164 | 4 | 28
30 | 1.0 | 465
485 | 8.2
8.0 | | Apr. 1-30
May 1-30 | 87.5
95.3 | 12
11 | | 56
56 | 8.2 | 35
43 | 6.4 | 198
195 | 35
37 | 42
51 | .2 | 1.0 | | 309
318 | .42 | 73.0
81.8 | 173
174 | 10
14 | 30
34 | 1.2 | 512
544 | 8.0
8.0 | | June 1-30
July 1-31 | 114
845 | 9.8
15 | | 54
52 | 8.0
8.8 | 53
60 | 6.8 | 194
189 | 39
41 | 66
74 | .2 | 1.0 | | 342
a353 | .47
.48 | 105
805 | 168
166 | 8
10 | 40
43 | 1.8 | 581
599 | 7.9
7.0 | | Aug. 1-31
Sept. 1-30 | | 16
15 | | 53
54 | 9.0
9.2 | 60
58 | 8.7
9.1 | 189
194 | 42
42 | 77
73 | | 2.0 | | 362
358 | .49
.49 | 129
95.2 | 169
172 | 14
14 | 42
41 | 2.0 | 602
615 | 7.8
7.4 | | Weighted average | 829 | 1.7 | | 50 | 5.7 | 29 | 7.4 | 181 | 25 | 33 | | 1.6 | | 274 | 0.37 | 613 | 148 | 0 | 29 | 1.0 | 439 | | a Calculated from determined constituents. NUECES RIVER BASIN--Continued MISCELLANEOUS ANALYSES OF STREAMS IN NUECES RIVER BASIN IN TEXAS | 6 | |----------------| | 9 | | - | | September | | 5 | | r 1958 | | r year October | | year | | , water | | Ton | | = | | mí.] | | s per million | | parts | | in | | analyses, | | Chemical | | | Мевп | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo | Fluo- | Ŋ | - Bo | Diss. | Dissolved solids
(calculated) | | Hardness
as CaCO, | | Per- | So-dium | Specific
conduct- | | |---|-------------------------|-------------------------------|----------|--------------|-----------------------|--------------|---------------------|-------------------------------|---------------|---|-------------|-----------------------------|---------|------------------------------|----------------------------------|--------------------|---------------------------------|------------------------|------|--------------------------|--------------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | (B) | Parts
per
mil-
lion | Tons T per acre- | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | Hq | | | | | | | | | | COLMENA | REEK AT | COLMENA CREEK AT US HIGHWAY 59 NEAR FREER | IY 59 NE. | AR FREER | | | | | | | | | | | | Mar. 30, 1959 | al | 09 | | 20 | 7.8 | 381 | | b683 | 127 | 149 | 3.4 | 0.2 | H | 1,080 | 1.47 | H | 82 | 0 | 91 | 18 | 1,680 | 8.9 | | | | | | | | | | 1945. | | NUECES RIVER NEAR TILDEN | EAR TIL | NEO | | | | | | | | | | | | Feb. 16, 1959 | 85 | 2.3 | | 72 67 | 14 | 107 | 10.5 | 199 | 52 67 | 110 | 0.2 | 7.7 | П | c443
522 | 0.60 | H | 237 | 74 | 37 | 3.1 | 769 | 8.0 | | | | | | | | | | | FRIO R | FRIO RIVER AT TILDEN | TLDEN | | | | | | | | | | | | | Feb. 16, 1959 | | 2.1 | | 95 | 23 | 288 | m 5- | 300 | 138 | 330 | 9.0 | 3.5 | | 1,660 | 1.35 | $\mid \cdot \mid$ | 234
203 | 00 | 73 | 8.2 | 1,760 | 8.2 | | | | | | | | | SAN MI | GUEL CREE | TK AT STA | SAN MIGUEL CREEK AT STATE HIGHWAY 173 NORTH OF TILDEN | Y 173 N | ORTH OF | TILDEN | | | | | | | | | | | Feb. 16, 1959 | | 4.4 | | 107 | 21 | 89 | | 285 | 156 | 106 | 0.3 | 0.0 | | c635 | 0.86 | H | 354 | 120 | 35 | 2.0 | 1,040 | 8.0 | | | | | | | | | | 20% | 2070. FRIO | FRIO RIVER AT CALLIHAM | CALLIH. | AM | | | | | | | | | | | | Jan. 30, Feb. 1-6, 1959 | | 7.8 | | 76 | 19 | 220 | | 253 | 129 | 315 | H | 6.1 | H | c928 | 1.26 | H | 312 | 105 | 09 | 5.4 | 1,580 | 8.1 | | | | | | | | | | A | ASCOSA R | ATASCOSA RIVER AT PLEASANTON | LEASANT | NO | | | | | | | | | | | | Feb. 16, 1959 | | 1.2 | | 130 | 75 | 178 | | 287 | 298 | 240 | 0.4 | 0.0 | H | 1,040 | 1.41 | H | 167 | 262 | 77 | 3.5 | 1,740 | 8.1 | | | | | | | | | 0 | LMOS CREE | K AI US | OLMOS CREEK AT US HIGHWAY 281 NEAR WHITSETT | 81 NEAR | WHITSET | H | | | | | | | | | | | Apr. 19, 1959 | | 16 | | 68 | 2.4 | 78 | | 141 | 145 | 56 | 0.5 | 1.0 | | 436 | 0.59 | H | 180 | 79 | 48 | 2.5 | 695 | 7.7 | | | | | | | | | SAN C | HRISTOVAL | CREEK A | SAN CHRISTOVAL CREEK AT US HIGHWAY 281 NEAR WHITSETT | WAY 281 | NEAR WH | IITSELL | | | | | | | | | | | Apr. 19, 1959 | | 20 | | 37 | 89. | 20 | (| 124 | 34 | 4.2 | 0.3 | 0.2 | H | 178 | 0.24 | H | 1.00 | 0 | 31 | 6.0 | 767 | 4.9 | | | | | | | | | S | ULPHUR CS | LEEK AT S | SULPHUR CREEK AT STATE HIGHWAY 9 AT OAKVILLE | WAY 9 A | T OAKVIL | TE | | | | | | | | | | | Apr. 19, 1959 | | 11 | | 76 | 14 | 239 | | 376 | 16 | 285 | 0.5 | 0.0 | | 932 | 1.27 | H | 292 | 0 | 99 | 6.1 | 1,640 | 7.3 | | | | | | | | | Z | NUECES RIV | ER AT US | RIVER AT US HIGHWAY 59 NEAR GEORGE WEST | 59 NEAR | GEORGE | WEST | | | | | | | | | | | Apr. 19, 1959 | | 17 | | 102 | 119 | 269 | | 323 | 162 | 342 | 7.0 | 1.8 | H | 1,070 | 1.46 | H | 332 | 68 | 99 | 7.9 | 1,860 | 7.3 | | a Field estimate. b Includes equivalent of 54 parts per million carbonate c Residue on evaporation at 180°C. | of 54 part | S per m | illion c | arbonat | e (CO ₃). | 3640. RIO GRANDE NEAR EL PASO, TEX. LOCATION.--At gaging station 5 miles northwest of El Paso, El Paso County, 6 miles northwest of Juarez, Chihuahua, and 1.9 miles above the American Dam. DRAINAGE AREA.--29,267 square miles. RECORDS AVAILABLE.--Chemical analyses: 1933 to 1959. REMARKS.--Chemical analyses by U. S. Department of Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28
and 29. | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | | dness
aCO, | Per- | So-
dium | Specific
conduct- | | |--------------------------------------|----------------|-------------------------|-------------------------------|--------------|-------------------|---------------------|-------------------|-------------|-------------------------------|-------------------|-------------------|-------------|------------------|--------------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-------------------| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO,) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | October 1958
November
December | 31
21
31 | 316
110
82.0 | | | 112
134
144 | 21
30
32 | 195
302
347 | | 225
273
287 | 365
518
582 | 176
268
303 | | (b) | 0.21
.28
.37 | 1,039
1,465
1,614 | 1.41
1.99
2.20 | | 366
460
491 | 182
236
256 | 54
59
61 | 4.4
6.1
6.8 | 1,580
2,160
2,390 | 7.8
8.3
8.0 | | January 1959
February
March | 31
17
26 | 65.2
60.2
825 | 22 | | 142
137
78 | 32
31
15 | 396
358
95 | 14
 | 295
299
193 | 594
561
192 | 356
314
78 | 1.0 | (b)
0.6
.6 | .32
.34
.15 | 1,747
1,635
612 | 2.38
2.22
.83 | | 487
472
257 | 246
227
98 | 63
62
44 | 7.8
7.2
2.6 | 2,600
2,430
926 | 7.9
8.0
7.9 | | April
May
June | 30
31
30 | 650
728
1,020 | | | 93
92
89 | 19
19
17 | 143
151
132 | == | 220
210
214 | 261
259
237 | 128
138
117 | == | .6
(b)
(b) | .14
.14
.14 | 807
823
736 | 1.10
1.12
1.00 | | 310
306
291 | 130
134
116 | 50
52
50 | 3.5
3.8
3.4 | 1,240
1,260
1,150 | 8.1
8.0
7.8 | | July
August
September | 31
31
28 | 1,010
1,080
567 | 19
 | | 89
91
101 | 17
18
20 | 134
130
163 | 8.6
 | 201
214
240 | 252
245
299 | 116
112
138 | .8
 | .0
.6
.6 | .17
.11
.17 | 773
769
888 | 1.05
1.05
1.21 | | 294
301
334 | 129
126
137 | 49
48
51 | 3.4
3.3
3.9 | 1,180
1,150
1,340 | 8.0
8.1
8.2 | a Includes equivalent of any carbonate (CO $_{\rm 3}$) present. b Less than 0.4 parts per million. ### 3705. RIO GRANDE BELOW OLD FORT QUITMAN, TEX. LOCATION.--At gaging station at the rectified channel of the Rio Grande, 1.5 miles below Old Fort Quitman, Hudspeth County, and 81.1 river miles below the American Dam at El Paso. DRAINAGE AREA.--32,035 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: 1933 to 1959. REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | Hard
as Co | | Per- | So-
dium | Specific
conduct- | | |--------------|---------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|--------------------------------------|-----| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₅) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | pH | | October 1958 | 0 | 193 | November | 4 | 21.7 | | | 178 | 43 | 442 | | 279 | 613 | 522 | | 1.9 | 0.48 | 2,030 | 2.76 | | 620 | 391 | 61 | 7.7 | 3,070 | 8.0 | | December | 5 | 4.9 | | | 246 | 62 | 623 | | 293 | 744 | 879 | | 3.1 | .50 | 2.843 | 3.87 | | 867 | 627 | 61 | 9.2 | 4,280 | 7.8 | | January 1959 | 4 | .5 | 14 | | 643 | 169 | 1,410 | 18 | 290 | 1,200 | 2,760 | 0.8 | 1.2 | .48 | 7,013 | 9.54 | | 2,300 | 2,060 | 57 | 13 | 9,970 | 7.8 | | February | 4 | .2 | | | 694 | 188 | 1,490 | | 256 | 1,220 | 3,030 | | 1.2 | .54 | 7,550 | 10.3 | | 2,510 | 2,300 | 56 | 1.3 | 10,600 | 7.9 | | March | 0 | 0 | | | | 1 | | | | | | | | | | | | | | | | | | | April | 0 | 0 | May | 0 | 26.9 | June | 0 | 2.6 | July | 1 | 20.3 | 12 | | 165 | 8.6 | 6.7 | 6.6 | 140 | 340 | 4.6 | .8 | .6 | .03 | 657 | .89 | | 448 | 333 | 3.1 | .1 | 840 | 7.8 | | August | 2 | 99.5 | | | 80 | 16 | 144 | | 208 | 224 | 131 | | 1.2 | .20 | 755 | 1.03 | | 264 | 93 | 54 | 3.8 | 1,150 | 8.0 | | September | 3 | 4.1 | | | 424 | 137 | 1,630 | | 253 | 1,720 | 2,260 | | 1.2 | .89 | 6,622 | 9.01 | | 1,620 | 1,410 | 69 | 18 | 9,310 | 8.0 | ### 3715. RIO GRANDE AT UPPER PRESIDIO, TEX. LOCATION.--At gaging station 7.8 river miles above the junction of the Rio Conchos, and about 10 miles northwest of Presidio, Presidio County, and 285.7 river miles below the American Dam at El Paso. DRAINAGE-AREA.--34,988 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: 1935 to 1959. REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | | iness
aCO; | Per- | So-
dium | Specific
conduct- | | |--------------|---------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|------| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₁) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | October 1958 | 16 | 225 | | | | | 95 | | 143 | | 96 | | | | 571 | 0.78 | | 240 | 122 | 46 | 2.7 | 918 | | | November | 9 | 10.2 | 1 | | | | 415 | | 215 | | 628 | | | | 2,097 | 2.85 | | 734 | 558 | 55 | 6.7 | 3,200 | | | December | 4 | .6 | | | | | 1,150 | | 232 | | 2,110 | | | | 6,491 | 8.83 | | 2,320 | 2,130 | 52 | 10 | 8,680 | | | January 1959 | 0 | 0 | February | 0 | 0 | | | | 1 | | | | | | | | | | | | | | | | | | | March | 0 | 0 | April | 0 | 0 | | | | - | | | | | | | | | | | | | | | | | | | May | 0 | 1.5 | 1 | June | 3 | 20.4 | | | | | 59 | | 171 | | 23 | | | | 386 | .52 | | 174 | 34 | 42 | 1.9 | 595 | | | July | 5 | 25.7 | 14 | | 88 | 5.7 | 58 | 5.9 | 151 | 227 | 11 | 0.8 | 3.1 | 0.06 | 528 | .72 | | 244 | 120 | 33 | 1.6 | 713 | 8.0 | | August | 7 | 51.9 | | | | | 69 | | 162 | | 43 | | | | 454 | .62 | | 196 | 63 | 43 | 2.1 | 689 | 2000 | | September | 3 | 6.9 | | | | 1 | 95 | | 159 | | 85 | | | | 570 | .78 | 1 | 230 | 100 | 47 | 2.7 | 886 | i . | ### 3750. RIO GRANDE NEAR JOHNSON RANCH, TEX. LOCATION.--At gaging station about 2 miles upstream from Johnson Ranch, Brewster County, 14 miles downstream from Castolon, and 392.9 river miles below the American Dam at El Paso. DRAINAGE AREA.--70,715 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: 1948 to 1959. REPHARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year
October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | | dness
aCO ₃ | Per- | So-
dium | Specific
conduct- | | |--------------|---------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|-----| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₂) | fate
(SO ₄) | ride
(Cl) | ride
(F) | trate
(NO _z) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | October 1958 | 0 | 18,800 | November | 5 | 2,230 | | | | | 127 | | 200 | | 87 | | | | 892 | 1.21 | | 384 | 220 | 42 | 2.8 | 1,270 | | | December | 5 | 1,030 | | | | | 174 | | 197 | | 122 | | | | 1,154 | 1.57 | | 461 | 300 | 45 | 3.5 | 1,590 | | | January 1959 | 4 | 742 | 26 | | 149 | 23 | 1.79 | 7.8 | 210 | 501 | 119 | 1.7 | 5.6 | 0.36 | 1,163 | 1.58 | | 467 | 294 | 45 | 3.6 | 1.610 | 7.8 | | February | 5 | 462 | | | : | | 217 | | 190 | | 163 | | | | 1,340 | 1.82 | | 506 | 351 | 48 | 4.2 | 1,860 | | | March | 7 | 345 | | | | | 229 | | 153 | | 1 72 | | | | 1,377 | 1.87 | | 488 | 362 | 51 | 4.5 | 1,890 | | | April | 6 | 285 | | | | | 229 | | 153 | | 174 | | | | 1,363 | 1.85 | | 488 | 362 | 51 | 4.5 | 1,900 | | | May | 8 | 512 | | | | | 157 | | 162 | | 103 | | | | 978 | 1.33 | | 371 | 238 | 48 | 3.6 | 1,380 | | | June | 8 | 620 | | | | | 157 | | 156 | | 102 | | | | 989 | 1.35 | | 376 | 248 | 48 | 3.5 | 1,400 | | | July | 9 | 1,290 | 24 | | 111 | 10 | 116 | 7.0 | 168 | 342 | 67 | 1.3 | .6 | .23 | 792 | 1.08 | | 320 | 182 | 43 | 2.8 | 1,120 | 7.8 | | August | 7 | 2,040 | | | | | 69 | | 151 | | 33 | | | | 627 | .85 | | 298 | 174 | 34 | 1.7 | 869 | | | September | 9 | 2,360 | | | | | 76 | | 183 | | 46 | | | | 544 | .74 | | 239 | 89 | 41 | 2.1 | 799 | | ### 3775. RIO GRANDE AT LANGTRY, TEX. LOCATION. --At gaging station at Langtry, Val Verde County, 24.1 miles above the confluence with the Pecos River, and 614.1 river miles below the American Dam at El Paso. DRAINAGE AREA. --84,795 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE. --Chemical analyses: 1944 to 1959. REMARKS. --Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dia | ssolved so | lids | Hard
as Co | iness
cCO, | Per- | So-
dium | Specific
conduct- | | |--------------|---------------|-------------------------|-------------------------------|------|--------------|--------------|--------------|-------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-----| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₁) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | October 1958 | 5 | 21,700 | | | 68 | 6.6 | 37 | | 153 | 123 | 1.7 | | 4.3 | 0.11 | 363 | 0.49 | | 196 | 72 | 29 | 1.2 | 561 | 7.8 | | November | 4 | 3,090 | | | 105 | 13 | 89 | | 183 | 270 | 61 | | 1.9 | .16 | 681 | .93 | | 318 | 168 | 38 | 2.2 | 1,000 | 8.1 | | December | 5 | 1,360 | | | 121 | 22 | 138 | | 186 | 398 | 101 | | 4.3 | .30 | 943 | 1.28 | | 394 | 242 | 43 | 3.0 | 1,320 | 7.8 | | January 1959 | 4 | 1,070 | 22 | | 118 | 22 | 134 | 6.3 | 194 | 378 | 95 | 1.3 | 4.3 | .29 | 915 | 1.24 | | 386 | 226 | 43 | 3.0 | 1,300 | 7.9 | | February | 4 | 795 | | | 119 | 24 | 137 | | 189 | 382 | 104 | | 3.7 | .20 | 916 | 1.25 | | 396 | 242 | 43 | 3.0 | 1,320 | 8.0 | | March | 3 | 643 | | | 108 | 26 | 139 | | 173 | 372 | 106 | | 1.9 | .32 | 914 | 1.24 | | 374 | 233 | 45 | 3.1 | 1,310 | 7.9 | | April | 5 | 566 | | | 97 | 25 | 127 | | 160 | 341 | 101 | | 1.2 | .24 | 831 | 1.13 | | 347 | 216 | 44 | 3.0 | 1,230 | 8.0 | | May | 3 | 1,110 | | 1 | 76 | 11 | 100 | | 177 | 237 | 44 | | 1.2 | .14 | 602 | .82 | | 234 | 89 | 48 | 2.9 | 886 | 8.0 | | June | 4 | 1,130 | | 1 | 89 | 13 | 75 | | 165 | 238 | 50 | | 1.9 | .15 | 585 | .80 | | 278 | 142 | 37 | 2.0 | 869 | 8.0 | | 04 | | -,,,,,,, | July | 6 | 2,360 | 18 | | 94 | 10 | 72 | 5.5 | 183 | 222 | 39 | 1.0 | 1.2 | .13 | 570 | .78 | | 276 | 126 | 36 | 1.9 | 834 | 7.9 | | August | 4 | 2,160 | | | 97 | 12 | 89 | | 180 | 250 | 53 | | 1.2 | .20 | 661 | .90 | | 292 | 145 | 40 | 2.3 | 945 | 7.9 | | September | 4 | 3,200 | | | 78 | 8.6 | 53 | | 179 | 154 | 33 | | 3.1 | .16 | 450 | .61 | | 229 | 82 | 34 | 1.5 | 669 | 8.0 | Water temperatures: March 1933 to September 1939. EXTREMES, 1958-59.--Dissolved solids: Maximum, 6,220 ppm Oct. 1-31; minimum, 4,240 ppm Nov. 23-30. Hardness: Maximum, 1,860 ppm Sept. 1-30; minimum, 1,510 ppm Nov. 1-22. Specific conductance: Maximum daily, 10,600 micromhos Oct. 3; minimum daily, 5,660 micromhos Nov. 28. Water temperatures: Maximum, 79% on many days during August and September; minimum, 44% on several days in January. EXTREMES, 1937-59.--Dissolved solids: Maximum, 15,600 ppm Sept. 17-30, 1953; minimum, 1,090 ppm June 1-2, 1948. Hardness: Maximum, 3,430 ppm July 1-31, Oct. 1-16, 1953; minimum, 602 ppm June 1-2, 1948. Specific conductance: Maximum daily, 24,200 micromhos Sept. 28, 30, 1953; minimum daily, 1,610 micromhos June 2, 1948. Water temperatures (1953-59): Maximum, 81°F Aug. 1-4, 1958; minimum, 40°F on several days during winter months. REMARKS. --Records of specific conductance of daily samples available in district office at Austin, Tex. Records of discharge for gaging station near Orla for water year October 1958 to September 1959 given in Water-Supply Paper 1632. Mean discharge values reported below have been adjusted to exclude inflow from Salt (Screwbean) Draw which enters Pecos River between sampling point and gaging | | Mean
dis- | Silica | Iron | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | solved so | 132 | | iness
aCO ₃ | Per- | So-
dium | Specific conduct- | | |--------------------------------------|-------------------|---------------------|------|-------------------|---------------------|--------------|---------------------|-------------------------------|-------------------------|-------------------------|-------------|-----------------------------|------------|------------------------------|------------------------------|-------------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|-------------------| | Date of collection | charge
(cfs) | (SiO ₂) | (Fe) | (Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | Oct. 1-31, 1958
Nov. 1-22 | 3.23
4.00 | 18
21 | | 400
398 | 135
125 | | 570
290 | 175
179 | 1,310
1,280 | 2,600
2,010 | | | | 6,220
5,210 | 8.46
7.09 | 54.2
56.3 | 1,550
1,510 | 1,410
1,360 | 70
65 | 18
14 | 9,670
8,000 | 7.2
6.8 | | Nov. 23-30
Dec. 1-31 | 3.40
3.97 | 1.5
1.5 | | 418
448 | 116
120 | | 393
913 | 143
164 | 1,340 | 1,380
1,360 | | 4.0
4.0 | | 4,240
4,420 | 5.77
6.01 | 38.9
47.4 | 1,520
1,610 | 1,400
1,480 | 56
55 | 10
9.9 | 6,280
6,350 | 7.2
8.1 | | Jan. 1-31, 1959
Feb. 1-28 | 3.72
4.19 | 14
13 | | 455
455 | 141
138 | 916
1,1 | 24 | 166
149 | 1,490
1,390 | 1,430
1,640 | | 2.5
3.0 | | 4,550
5,010 | 6.19
6.81 | 45.7
56.7 | 1,720
1,700 | 1,580
1,580 | 53
58 | 9.6
12 | 6,520
6,990 | 8.1 | | Mar. 1-31
Apr. 1-30 | 81.2
200 | 12
11 | | 445
448 | 131
127 | 1,010 | 30 | 143
139 | 1,490
1,470 | 1,530
1,620 | | 3.0
2.0 | | 4,680
4,790 | 6.36
6.51 | 1,030
2,590 | 1,650
1,640 | 1,530
1,530 | 57
57 | 11
11 | 6,740
6,890 | 8.1
7.6 | | May 1-31
June 1-30 | 4.11
164 | 14
14 | | 470
448 | 157
132 | | 310
120 | 152
141 | 1,610 | 2,030
1,720 | | 2.5 | | 5,670
5,010 | 7.71
6.81 |
62.9
2,220 | 1,820
1,660 | 1,690
1,550 | 61
60 | 13
12 | 8,310
7,190 | 7.3
7.2 | | July 1-31
Aug. 1-31
Sept. 1-30 | 172
261
108 | 14
17
17 | | 450
482
505 | 118
153
145 | 1,2 | 200
390 | 135
130
130 | 1,500
1,620
1,700 | 1,690
1,870
2,130 | | 1.0 | | 4,970
5,410
5,950 | 6.76
7.36
8.09 | 2,310
3,810
1,740 | 1,610
1,830
1,860 | 1,500
1,720
1,750 | 60
59
61 | 12
12
14 | 7,040
7,470
8,460 | 7.1
7.5
7.7 | | Weighted average | 84.4 | 14 | | 463 | 135 | 1,1 | 150 | 136 | 1,550 | 1,760 | | 2.2 | | 5,140 | 6.99 | 1,170 | 1,710 | 1,600 | 59 | 12 | 7,280 | | ### 4465. PECOS RIVER NEAR GIRVIN, TEX. Water-Supply Paper 1632. | | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | | solved sol | | Hard
as C | iness
aCO ₁ | Per- | So-
dium | Specific conduct- | | |--------------------|-------------------------|-------------------------------|--------------|--------------|--------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|-------------|--------------------------|------------------------------|-----| | Date of collection | dis-
charge
(cfs) | Silica
(SiO _z) | Iron
(Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | Oct. 1-13, 1958 | 68.2 | | | | | 1,960 | | 163 | 1,980 | 3,020 | | | | | | | 2,210 | 2,080 | 66 | 18 | 11,500 | 7.5 | | Oct. 14-31 | 35.7 | | | | | 2,790 | | 163 | 2,740 | 4,270 | | | | | | | 3,000 | 2,870 | 67 | 22 | 15,500 | 7.5 | | Nov. 1-30 | 33.0 | | | | | 3,490 | | 150 | 3,280 | 5,430 | | | | | | | 3,670 | 3,550 | 67 | 25 | 18,700 | 7.4 | | Dec. 1-31 | 30.5 | | 3 | | | 3,910 | | 177 | 3,540 | 6,000 | | | | | | | 3,790 | 3,640 | 69 | 28 | 20,200 | 7.8 | | Jan. 1-31, 1959 | 31.2 | | | | | 4,020 | | 200 | 3,590 | 6,190 | | | | | | | 3,960 | 3,800 | 69 | 28 | 20,600 | 7.6 | | Feb. 1-28 | 30.5 | | | | | 3,890 | | 188 | 3,660 | 6,140 | | | | | | | 4,040 | 3,890 | 68 | 2.7 | 20,500 | 8.0 | | Mar. 1-31 | 26.1 | | | | | 4,330 | | 172 | 3,890 | 6,780 | | | | | | | 4,230 | 4,090 | 69 | 29 | 22,200 | 8.1 | | Apr. 1-30 | 24.1 | | | | | 4,510 | | 118 | 3,940 | 7,070 | | | | | | | 4,330 | 4,230 | 69 | 30 | 22,700 | 7.2 | | May 1-31 | 24.3 | 5.4 | | 733 | 533 | 4,120 | | 67 | 3,750 | 6,440 | | | | 15,600 | 21.4 | 1,020 | 4,020 | 3,960 | 69 | 28 | 21,200 | 7.2 | | June 1-30 | 16.8 | 7.2 | | 615 | 451 | 3,080 | | 49 | 3,100 | 4,960 | | | | 12,200 | 16.7 | 553 | 3,390 | 3,350 | 66 | 23 | 17,200 | 7.2 | | July 1-17 | 23.8 | 6.3 | | 655 | 412 | 3,470 | | 54 | 3,360 | 5,280 | | | | 13,200 | 18.1 | 848 | 3,330 | 3,280 | 69 | 26 | 17,900 | 6.9 | | July 18-24 | 43.1 | 1.9 | 1 | 460 | 186 | 1,390 | | 80 | 1,830 | 2,150 | | | | 6,060 | 8.24 | 705 | 1,910 | 1,850 | 61 | 14 | 8,640 | 8.0 | | July 25-31 | 14.0 | 4.7 | | 478 | 317 | 2,370 | | 94 | 2,520 | 3,610 | | | | 9,350 | 12.8 | 353 | 2,500 | 2,420 | 67 | 21 | 13,100 | 7.0 | | Aug. 1-31 | 10.3 | | | | | 4,690 | | 53 | 4,420 | 7,360 | | | | | | | 4,730 | 4,690 | 68 | 30 | 22,700 | 7.3 | | Sept. 1-30 | 10.3 | | | | | 4,960 | | 62 | 4,590 | 7,910 | | | | | | | 4,940 | 4,890 | 69 | 31 | 23,900 | 7.2 | | Weighted average | 26.1 | | | | | 3,620 | | 138 | 3,370 | 5,640 | | | | | | | 3,670 | 3,560 | 68 | 26 | 18,900 | | ### PECOS RIVER NEAR SHUMLA, TEX. LOCATION. -- At gaging station about 6 miles north of Shumla, Val Verde County, 13.0 miles upstream from the Pecos High Bridge and 18.5 river miles upstream from the confluence with the Rio Grande. DRAINAGE AREA. -- 35,162 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.—C-Chemical analyses: October 1954 to September 1959. REMARKS.—Chemical analyses by U. S. Department of Agricultural Research Service, U. S. Salinity Laboratory, Riverside Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | Y | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Dis | ssolved so | lids | | iness
aCO ₃ | Per- | So-
dium | Specific
conduct- | | |--------------------------------------|---------------|-------------------------|-------------------------------|------|-------------------|----------------|-------------------|---------------------|-------------------------------|----------------------------|-------------------|-------------|-----------------------------|--------------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|-------------------| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO _t) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pH | | October 1958
November
December | 3
5
5 | 533
282
241 | == | | 134
140
156 | 48
60
67 | 282
360
416 | | 169
180
188 | 354
375
425 | 463
603
696 | | 6.2
5.6
3.7 | 0.15
.20
.25 | 1,449
1,718
1,999 | 1.97
2.34
2.72 | | 530
596
667 | 392
449
513 | 54
57
58 | 5.3
6.4
7.0 | 2,290
2,790
3,150 | 7.9
8.1
7.9 | | January 1959
February
March | 4
4
5 | 215
202
187 | 5 | | 170
171
175 | 75
81
82 | 475
510
517 | 7.0 | 187
177
174 | 473
500
496 | 798
859
878 | 0.8 | 3.7
3.7
2.5 | .23
.28
.27 | 2,212
2,351
2,484 | 3.01
3.20
3.38 | | 732
760
772 | 578
616
629 | 58
59
59 | 7.6
8.0
8.1 | 3,530
3,730
3,800 | 7.9
8.0
7.9 | | April
May
June | 4
4
5 | 174
227
262 | | | 163
154
158 | 77
76
77 | 502
500
536 | | 156
137
142 | 487
476
506 | 840
840
880 | | 1.9
.6
.6 | .24
.20
.26 | 2,268
2,300
2,366 | 3.08
3.13
3.22 | | 724
696
710 | 596
584
593 | 60
61
62 | 8.1
8.2
8.7 | 3,650
3,590
3,760 | 3.0
7.9
8.0 | | July
August
September | 4
4
5 | 633
258
433 | 14 | | 104
99
82 | 40
42
26 | 262
255
149 | 5.9 | 153
159
160 | 257
253
144 | 430
418
248 | .8 | 1.2
3.1
2.5 | .13
.09
.10 | 1,257
1,229
803 | 1.71
1.67
1.09 | | 424
421
308 | 300
291
177 | 57
57
51 | 5.5
5.4
3.7 | 2,060
1,980
1,310 | 7.9
8.2
8.0 | 4590. RIO GRANDE AT LAREDO, TEX. LOCATION.--At gaging station at railroad bridge between Laredo, Webb County, and Nuevo Laredo, Tamaulipas, 884.3 miles below the American Dam at El Paso. DRAINAGE AREA.--135,976 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: July 1955 to September 1959. DRAIRAGE AREA. -- 133,976 square miles (united States and mexico; from international soundary and water commission water Sufferin Adminer 207. RECORDS AVAILABLE. -- Chemical analyses: July 1955 to September 1959. REMARKS. -- Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved so | lids | Hard
as Co | dness
aCO, | Per- | So-
dium | Specific
conduct- | | |--------------|---------------|-------------------------|-------------------------------|------|--------------|---------------------|--------------|---------------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|------------------------|---------------------|--------------------------|------------------------------|-----| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | October 1958 | 31 | 29,630 | | | | | 39 | | 153 | | 27 | | | | 379 | 0.52 | | 202 | 78 | 29 | 1.2 | 570 | | | November | 30 | 8,220 | | | | | 59 | | 168 | | 57 | | | | 497 | .68 | | 250 | 112 | 34 | 1.6 | 755 | | | December | 31 | 4,330 | | | | | 81 | | 180 | | 87 | | | | 593 | .81 | | 282
| 135 | 38 | 2.1 | 908 | 2.5 | | January 1959 | 31 | 3,560 | 12 | | 85 | 20 | 87 | 3.5 | 183 | 184 | 99 | 0.8 | 6.8 | 0.13 | 619 | .84 | | 294 | 144 | 39 | 2.2 | 958 | 7.8 | | February | 28 | 3,150 | | | | | 90 | | 159 | | 112 | | | | 601 | .82 | | 276 | 146 | 42 | 2.4 | 948 | | | March | 31 | 2,470 | | | | | 115 | | 161 | | 104 | | | | 662 | .90 | | 284 | 152 | 47 | 3.0 | 1,020 | | | April | 30 | 2,180 | | | | | 97 | | 162 | | 123 | | | | 629 | .86 | | 282 | 150 | 43 | 2.5 | 995 | | | May | 31 | 2,870 | | | | | 91 | | 165 | | 110 | | | | 609 | .83 | | 270 | 134 | 42 | 2.4 | 939 | | | June | 30 | 3,770 | | 1 | | | 69 | | 156 | | 85 | | | | 473 | .64 | | 235 | 108 | 39 | 2.0 | 777 | | | July | 31 | 4,440 | 22 | | 72 | 12 | 67 | 4.7 | 153 | 148 | 69 | .8 | 5.0 | .11 | 496 | .67 | | 228 | 103 | 38 | 1.9 | 758 | 7.9 | | August | 31 | 2,880 | | | | | 81 | | 153 | | 88 | | | | 546 | .74 | | 237 | 112 | 43 | 2.3 | 837 | | | September | 30 | 4,750 | | | | | 54 | | 162 | | 43 | | | | 429 | .58 | | 215 | 82 | 35 | 1.6 | 660 | | ### RIO GRANDE BELOW FALCON DAM, TEX. LOCATION.--Immediately below Falcon Dam, Starr County, 2.5 miles upstream from gaging station near Chapeno, 970.9 river miles below the American Dam at El Paso. DRAINAGE AREA.--164,482 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: July 1955 to September 1959. REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. | | Number | Mean | | • | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | ssolved sol | ids | Hard
as C | iness
cO ₁ | Per- | So-
dium | Specific
conduct- | | |--------------|---------------|-------------------------|-------------------------------|--------------|--------------|---------------------|--------------|---------------------|-------------------------------|----------------------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|--------------------------|---------------------|--------------------------|------------------------------|-----| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO ₄) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | рН | | October 1958 | 12 | 32,500 | | | 58 | 9.4 | 49 | | 136 | 103 | 52 | | 1.9 | 0.15 | 367 | 0.50 | | 184 | 72 | 37 | 1.6 | 591 | 7.8 | | November | 1.2 | 19,000 | | | 60 | 8.9 | 40 | | 137 | 98 | 39 | | 2.5 | .10 | 347 | .47 | | 186 | 73 | 32 | 1.3 | 551 | 8.0 | | December | 6 | 7,570 | | | 63 | 9.6 | 40 | | 149 | 105 | 36 | | 4.3 | .11 | 360 | .49 | | 196 | 74 | 31 | 1.2 | 561 | 7.9 | | January 1959 | 12 | 3,460 | 6 | | 69 | 9.1 | 40 | 3.9 | 159 | 105 | 39 | 0.8 | 5.0 | .07 | 375 | .51 | | 209 | 78 | 29 | 1.2 | 589 | 7.8 | | February | 10 | 6,030 | | | 66 | 12 | 42 | | 162 | 109 | 41 | | 5.0 | .13 | 388 | .53 | | 215 | 82 | 30 | 1.2 | 610 | 8.0 | | March | 12 | 5,640 | | | 72 | 9.4 | 44 | | 165 | 106 | 46 | | 4.3 | .14 | 421 | .57 | | 219 | 84 | 30 | 1.3 | 636 | 7.8 | | April | 12 | 3,110 | | | 74 | 13 | 51 | | 168 | 129 | 53 | | 3.7 | .18 | 411 | .56 | | 238 | 100 | 32 | 1.4 | 688 | 8.0 | | May | 12 | 5,290 | | | 73 | 14 | 57 | | 160 | 143 | 60 | | 3.7 | .11 | 483 | .66 | | 238 | 107 | 34 | 1.6 | 727 | 7.8 | | June | 10 | 4,250 | | | 72 | 14 | 62 | | 153 | 150 | 68 | | 3.1 | .09 | 468 | .64 | | 238 | 112 | 36 | 1.8 | 750 | 7.9 | | July | 13 | 3,720 | 13 | | 69 | 16 | 69 | 3.9 | 138 | 160 | 79 | .6 | 1.2 | .13 | 504 | .69 | | 236 | 123 | 38 | 2.0 | 782 | 7.8 | | August | 9 | 1,950 | | | 66 | 16 | 72 | | 125 | 171 | 82 | 1 12 | .6 | .15 | 510 | .69 | | 231 | 128 | 40 | 2.1 | 784 | 7.9 | | September | 14 | 4,600 | | | 65 | 16 | 74 | | 126 | 165 | 82 | | 1.2 | .14 | 494 | .67 | | 228 | 124 | 41 | 2.1 | 788 | 7.9 | ### RIO GRANDE AT FORT RINGGOLD, RIO GRANDE CITY LOCATION, --At gaging station about 1 mile downstream from Rio Grande City, Starr County, 3.9 miles below the mouth of the Rio San Juan, and 1,014.3 river miles below the American Dam at El Paso. DRAINAGE AREA.--180,396 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE.--Chemical analyses: January to September 1959. REMARKS.--Chemical analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1938 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. Chemical analyses, in parts per million, January to September 1959 | | Number of | | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | D | ssolved so | lids | Hard
as Co | dness
aCO ₁ | Per- | So-
dium | Specific conduct- | | |---------------------|---------------|-------------------------|-------------------------------|------|--------------|---------------------|--------------|-------------|-------------------------------|---------------|--------------|-------------|-----------------------------|------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|---------------------|--------------------------|------------------------------|-----| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(Cl) | ride
(F) | trate
(NO ₁) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | cent
so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pН | | lanuary 1959 | 31 | 4,130 | 6 | | 74 | 9.1 | 50 | 4.3 | 164 | 113 | 53 | 0.6 | 5.6 | 0.15 | 419 | 0.57 | | 221 | 87 | 32 | 1.5 | 6.56 | 7.9 | | ebruary
arch | 28
31 | 6,560
6,150 | | | 62
73 | 12 | 45
48 | | 160
165 | 113
117 | 45
51 | | 5.0 | .07 | 399
435 | .54 | | 215
231 | 84
96 | 31
31 | 1.3 | 621
638 | 7.8 | | pri! | 30 | 3,240 | | | 78 | 13 | 60 | | 173 | 136 | 69 | | 3.7 | .11 | 481 | .65 | | 247 | 106 | 35 | 1.7 | 755 | 7.8 | | ay
une | 31
30 | 5,180
4,210 | | | 75
75 | 14 | 62
69 | | 163
160 | 146
155 | 67
78 | | 3.1 | .09 | 501
501 | .68 | | 246
251 | 112
120 | 35
38 | 1.7 | 763
803 | 7.9 | | ul y | 31 | 3,800 | 12 | | 71 | 16 | 73 | 4.3 | 145 | 164 | 80 | .6 | 2.5 | .16 | 516 | .70 | | 242 | 123 | 39 | 2.1 | 810 | 7.9 | | August
September | 31
27 | 2,130
4,630 | | | 72
68 | 16 | 86
76 | | 146
136 | 169
166 | 99
85 | | 1.9 | .16 | 553
511 | .75 | | 246
236 | 126
124 | 43 | 2.4 | 876
809 | 8.1 | ### RIO GRANDE AT ANZALDUAS DAM LOCATION. -- At gaging station 0.5 mile below Anzalduas Dam, Hidalgo County, 12.2 miles upstream from Hidalgo, and 1,077.1 river miles below the American Dam at El Paso. DRAINAGE AREA. -- 182,138 square miles (United States and Mexico; from International Boundary and Water Commission Water Bulletin Number 28). RECORDS AVAILABLE. -- Chemical analyses: March to September 1959. RECORDS analyses by U. S. Department of Agriculture, Agricultural Research Service, U. S. Salinity Laboratory, Riverside, Calif. Records of specific conductance of daily samples and records of discharge for water year October 1958 to September 1959 given in International Boundary and Water Commission Water Bulletin Numbers 28 and 29. ### Chemical analyses, in parts per million, March to September 1959 | | Number | Mean | | | Cal- | Mag- | So- | Po- | Bicar- | Sul- | Chlo- | Fluo- | Ni- | Bo- | Di | issolved so | lids | Hare
as C | iness
cCO ₃ | Per- | So-
dium | Specific
conduct- | | |-------------------------------------|------------------|-------------------------------|-------------------------------|--------------|----------------------|----------------------|--------------------------|---------------------|-------------------------------|--------------------------|--------------------------|-------------|-----------------------------|--------------------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------------|----------------------|--------------------------|----------------------------------|--------------------------| | Month | of
Samples | dis-
charge
(cfs) | Silica
(SiO ₂) | Iron
(Fe) | cium
(Ca) | ne-
sium
(Mg) | dium
(Na) | tas-
sium
(K) | bonate
(HCO ₃) | fate
(SO,) | ride
(CI) | ride
(F) | trate
(NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | (micro-
mhos at
25° C) | pH | | March 1959
April
May | 9
8
9 | 3,830
762
987 | 12 | | 73
87
81 | 13
18
18 | 71
115
115 | 5.1 | 154
167
159 | 134
176
180 | 87
159
148 | 0.6 | 3.7
3.7
3.1 |
0.15
.24
.25 | 520
692
678 | 0.71
.94
.92 | | 234
292
276 | 108
155
146 | 39
46
48 | 2.0
2.9
3.0 | 796
1,110
1,070 | 7.8
8.0
8.0 | | June
July
August
September | 8
8
8
7 | 1,300
603
15.3
1,350 | 13 | | 85
83
80
74 | 20
21
21
19 | 129
130
143
109 | 4.7 | 159
154
138
141 | 198
208
206
193 | 174
168
194
137 | .6 | 1.9
1.2
.6 | .28
.30
.34
.19 | 721
746
765
628 | .98
1.01
1.04
.85 | | 295
292
286
264 | 164
166
173
148 | 49
49
52
47 | 3.3
3.3
3.7
2.9 | 1,180
1,180
1,230
1,010 | 7.9
7.8
8.0
8.1 | MISCELLANEOUS ANALYSES OF STREAMS IN RIO GRANDE BASIN IN TEXAS RIO GRANDE BASIN--Continued | | | | | _ | | | | - | - | | - | - | - | | | | | | | | | | |--------------------|-----------------|-------------------------------|------|--------------|--------------|--------------|-------------|------------------|---------------|-------------------|-------------|--------------------|------------|------------------------------|--|--------------------|---------------------------------|------------------------|-------------|--------------------------|--------------------------------------|----| | | Mean | | _ | Cal- | Mag- | Š | Po- | Bicar- | Sul- | Chlo- | Fluo- | N: | Bo- | Diss
(resid | Dissolved solids
(residue at 180°C) | ds
0°c) | Hardness
as CaCO, | CO | Per- | So. | Specific
conduct- | | | Date of collection | charge
(cfs) | Silica
(SiO ₂) | (Fe) | cium
(Ca) | sium
(Mg) | dium
(Na) | sium
(K) | bonate
(HCO,) | fate
(SO,) | ride
(CI) | ride
(F) | (NO ₃) | ron
(B) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Cal-
cium,
magne-
sium | Non-
carbon-
ate | so-
dium | adsorp-
tion
ratio | ance
(micro-
mhos at
25° C) | H. | | | | | | | | | | | LAKE WA | WALK NEAR DEL RIO | EL RIO | | | | | | | | | | | | | 20 1958 | | 1.3 | 0 03 | 75 | 2 2 | 7 | 2 | 761 | 7 9 | 78 003 87 | 0 | 7 | | 306 | | 0.28 | 841 | 0 | 0 | . 0 | 333 | |