FRESHWATER INFLOW RECOMMENDATION
J
FOR THE NUECES ESTUARY

by

Texas Parks and Wi‘dlife Department
Resource Protection Division
Coastal Studiés Program
Austin, Tex&s 78744

Appendix
by

Texas Water Development Board
Hydrologic and Environmental Monitoring Division
Environmenfal Section
Austin, Texas 78711

Septembér, 2002

TEXAS

PARKS &
WILDLIFE




T/ T3 Ty 7 T3

FRESHWATER INFLOW RECOMMENDATION

FOR THE NUECES ESTUARY

Report
by

Warren Pulich Jr., James Tolan, Wen Y. Lee, and William Alvis

Texas Parks and Wildlife Department
Resource Protection Division
Coastal Studies Program
Austin, Texas 78744

Appendix
by

Texas Water Development Board
Hydrologic and Environmental Monitoring Division
Environmental Section
Austin, Texas 78711

September, 2002



-3 3 T3 T3

3

3

1

A R B

3

TABLE OF CONTENTS
EXECUTIVE SUMMARY ..ottt et isesisacsssssesssesuesesssassasssssnssasssesessessssessesasssas 1
SECTION 1: INTRODUCTION ......utvctiecemeircnncrcrcesictesiststsssesesessssnesaesesassssssnescsssssessenssssnnens 6
L1, ODBJECHIVES ...c.ccveimiririniitiiiti ettt sttt st e sresn s et ase b bera s s snsennes 7
SECTION 2: ANALYTICAL PROTOCOL AND MODELING OUTPUT .........cccccrverecrverernene 9
2.1. Review of TXEMP Model RESUILS........ccccocoiiririiriiiiieicriereernesnesniinessseseesesessnesssssereass 10
2.2. Comparison of MaxH Target Flows to Historical Hydrology............ccccoccevnninnivcnnaee. 12
2.3. Review of TXBLEND MOAEliNg .....c.ccoiviniiniiiiniiinitiniiiiiienicseenesncsstenaesneseessenseesnes 13
SECTION 3: EVALUATION OF BIOLOGICAL RESPONSES TO TARGET
FRESHWATER INFLOWS.........ooeccecrtrreseeseessressesensensesssessesessesessessesssane 15
3.1. Effects of MinQ vs. MaxH Flows on Salinity Regimes.........cccccoovviiviiirivinncrennennrniennns 16
3.2. Salinity Effects on Upper Nueces Bay and Delta...........c.cccocvirvrnniininnnininnecieciennneneenne 17
3.3. Time Series Analysis of Salinity at Critical Bay Sites ..........ccccocemvmniirenreninieneniecnienenns 19
3.4. Statistical Correlations between Fisheries Abundance and Historical Hydrology............ 23
3.5. Analytical Approach and HYPOthesis ........c.ccooovviiiinciinciienirrrrnerneenresecenre e sessvenseen 24
3.6. StatiStCAl ANAIYSES....c.ceiveriecrririeirineresieeiinreee e stseesitesbessassseesasarsesnsessessessesstonsossronseresns 25
3.7 GIS ANALYSES ...oeivereiireeieniet e es st e e ssnesae s s e sas e be st et e be st e b et e snanneeneen 28
SECTION 4: MAINTENANCE OF FRESHWATER INFLOWS TO NUECES BAY
NURSERY HABITAT ........o o oieeeeeeretecnrtrctestesteeneesesnnsansnessesetesnsssasssssaesseseses 32
SECTION 5: DISCUSSION AND INFLOW RECOMMENDATION .......c.ccooceievirerrerereeens 34
REFERENCES ........ccoitiitiiiiiitenteiettete sttt e seste s st et s s e sans s assasassasssesassssssestensessssernenenes 38
APPENDIX: VALUES AND CONSTRAINTS FOR THE TXEMP MODEL USED IN
THE FRESHWATER INFLOW ANALYSIS OF NUECES ESTUARY .............. 44
FIGURES ...ttt sttt e s et s st e s e e e st e et e s st e sasasssesaesesssessnenneraessssnsessensans 69
il



—

N B

3

I B

3

1

-

B

B R R

-

ACKNOWLEDGEMENTS

Many other people contributed to the final production of this report. We thank especially:
Jeffrey Williams of TPWD for compiling special datasets from the Coastal Fisheries database;
various persons for reviewing report drafts (TPWD staff: Dave Buzan, Cindy Loeffler, Nathan
Kuhn; TWDB staff: David Brock, William Longley, Junji Matsumoto; Univ. of Texas Marine
Science Institute, Paul Montagna); and those too numerous to name who engaged us in

stimulating discussions about freshwater inflow issues.
This work was supported by funding from the Sport Fish Restoration Program (U.S. Fish

and Wildlife Service) under Federal Aid Project F-37-TA and by funding from the Water

Research and Planning Fund of the Texas Water Development Board.

iii



1

-3

T3 T3

3

3 73

A T R B

3 T3

R

T A D T

EXECUTIVE SUMMARY

This report summarizes studies performed by Texas Parks & Wildlife Department
(TPWD) in accordance with Texas Water Code 11.1491 to recommend freshwater inflow targets
which sustain the unique biological ecosystems characteristic of an "ecologically sound and
healthy" Nueces Estuary. Methods for determining the quantity and quality of freshwater inflows
(FWI) needed to maintain biological productivity of Texas’ estuaries were developed by the State
Bays and Estuaries Research Program [consisting of the Texas Water Development Board
(TWDB) and TPWD] under Texas Water Code 16.058. These methods, relying on computer
optimization and hydrodynamic modeling, predict a minimum freshwater inflow (termed the
MinQ flow) and maximum harvest inflow (the MaxH flow) for each estuary. In this report, the
MaxH target flow predicted by modeling studies is critically evaluated for its effectiveness in
maintaining historical fisheries production and wetland habitats in the Nueces Estuary. For this
analysis, fisheries-independent sampling data from the TPWD Coastal Fisheries Resource
Monitoring Program and wetland maps from the TPWD Coastal Studies Program are used to

evaluate the computer simulation results.

REVIEW OF TWDB/TPWD MODELING RESULTS (see Appendix)

As presented in the Appendix, the Estuarine Mathematical Programming or Optimization
Model (known as TXEMP) was used to compute a range of flows necessary to maintain an
“ecologically sound and healthy” environment within the Nueces Estuary. In addition to
maximum harvest inflow, TXEMP also identified both the minimum (MinQ = 115,600 acre-
ft/year) and maximum (MaxQ = 167,100 acre-ft/year) annual inflows that satisfied all the
modeling constraints. The model predicted that maximum fisheries harvest flow (MaxH)
occurred at 138,500 acre-ft/yr, with a specific distribution of monthly inflows. Despite a 16.6%
volumetric difference between annual MinQ and MaxH target flows, the difference appeared
small (only 7.3%) in total commercial fisheries harvest predicted between the two cases (1.992
vs. 2.149 million pounds for MinQ vs. MaxH, respectively). MaxH flow produced slightly

higher harvests of red drum, black drum, spotted seatrout, and brown shrimp, but slightly



decreased amounts of blue crab. Under MinQ and MaxH scenarios, brown shrimp dominated
total harvests, which were 26.7% and 36.6% higher, respectively, than the TXEMP target (70% of

mean historical commercial harvest).

TPWD STUDIES VERIFYING BIOLOGICAL RESPONSES TO TARGET INFLOWS
TPWD performed two types of verification analyses on the computed FWI targets: 1)
Seasonal salinity gradients predicted by the hydrodynamic model were evaluated for any
measurable biotic effects; and 2) Fisheries-independent relative abundance data were correlated
with historical hydrologic regimes, thereby allowing comparisons of species abundance under

observed inflow regimes to that under modeled inflows.

Salinity Gradient Effects and Time Series Analysis of MinQ vs. MaxH Flows

Geographic Information System (GIS) techniques were used to compare salinity gradient
maps from the hydrodynamic model (TXBLEND) output under optimized MaxH or MinQ
inflows. Two different hydrologic regimes in Nueces Bay were examined: MinQ or MaxH
inflows with tides, winds, and temperatures from the 1988-1989 DRY regime; and MinQ or
MaxH inflows with tides, winds, and temperatures from the 1991-1992 WET, cooler period.
Salinity change analysis was performed by overlaying monthly MinQ and MaxH salinity maps
for each regime, producing salinity difference maps between each target flow condition.
Locations of critical marsh nursery habitat in the Nueces Bay delta region (approximately 2000
ha of regularly flooded salt marsh) were given special consideration in this evaluation. Results
documented the almost complete lack of a typical estuarine salinity gradient in the system under
both WET and DRY regimes, with salinities > 30 ppt found year-round within lower Nueces Bay
proper. Slight salinity differences (< 2.0 ppt) were evident between the MaxH and MinQ cases at

a few locations in parts of upper Nueces Bay, primarily during May and June,.

Time-series analyses were performed on the salinity data from the TXBLEND model at
two key sites (model nodes) in the Estuary, to determine how often model constraints for salinity

were exceeded under target FWI flows. Both MinQ and MaxH cases exceeded the model salinity
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constraints in the upper bay by 5 to 6 ppt on many days during DRY weather years (39% vs.
27%, MinQ vs. MaxH); while during the WET years, few exceedances were observed (5% vs.
2%, MinQ vs. MaxH). Overall, salinity values predicted by MinQ and MaxH flows under DRY
conditions exceeded salinity constraints most severely during the spring and late summer, a cause

of concern for the critical delta nursery area.

Low- vs. High-Inflow Analysis of Coastal Fisheries Monitoring Data

Because a substantial salinity gradient is lacking within the Corpus Christi Bay system,
statistical techniques were used to establish direct correlations between FWI hydrology and
fisheries organisms. Simple linear regression, unpaired t-tests, and GIS analyses were used to
correlate historical inflows with natural abundance of eight target species in Nueces Estuary:
white and brown shrimp, blue crab, Gulf menhaden, Atlantic croaker, bay anchovy, spot, and
striped mullet. TPWD Coastal Fisheries monitoring data covering the period 1978 to 1997 were
analyzed and statistical correlations were determined between seasonal freshwater inflows and
the relative abundance (measured by catch per unit effort, or CPUE) of young animals caught in
bag seines. Arc/Info GIS plots (overlays) were also developed with the observed bag seine catch
rates and contoured salinity data from the Coastal Fisheries database to determine spatial

relationships between species abundance and corresponding habitat locations within the Estuary.

Mean CPUE was compared for LOW- and HIGH-inflow years, with catch data separated
according to actual, seasonal surface inflows over the 19-year period. Differences between
HIGH- and LOW-inflow years were based on the cumulative surface inflow reaching the estuary
during the seasonal periods of peak occurrence of each species. HIGH and LOW inflows were
separated using, as a cutoff, the cumulative monthly values of MaxH flows (which is 89,200
acre-ft for the April through July period). Statistical analyses confirmed that shellfish (brown
shrimp, white shrimp, and blue crab) and finfish species (Atlantic croaker) differed significantly
in average relative abundance between LOW- and HIGH-flow years, as shown by significantly
higher catch rates under HIGH flows (i.e., inflows higher than cumulative MaxH of 89,200 acre-
ft), compared
to LOW flows (i.e., inflows lower than MaxH). This is interpreted as meaning that observed

3



production of these four species continues to increase with inflows two- and three-fold higher
than this seasonal MaxH value. Although results for the four remaining finfish species (bay
anchovies, Gulf menhaden, striped mullet, and spot) were not statistically significant, all except
menhaden exhibited the trend of higher relative abundance in HIGH-flow as compared to LOW-

flow years.

Evaluation of MaxH Flows in relation to Pulsed Historical Hydrology Cycles

When historical inflows from 1941 to 1996 are compared to the MinQ and MaxH target
values, the results reveal significant patterns. The monthly quantities for MaxH equal the
monthly historical median values in 8 out of 12 months; six of these months are March through
August. These median values (the 50™ percentile inflows) are, in fact, the upper hydrology
bounds (inflow constraints) allowed in the solution of the TXEMP model. This is important
because Nueces Estuary historically receives inflows in a highly pulsed or episodic mode. For
example, between 1977 and 1997, 64 % (or 9 out of the 14 such large pulses of inflow greater
than 100,000 ac-ft per month) occurred in the critical spring-summer months of May and June.
Thus, seasonally-required median MaxH target flows are quite significant in that they overlap

with these actual May-June monthly pulses.

Various water diversion projects (e.g., Rincon Bayou channel diversion, Allison
wastewater treatment plant discharge, etc.) are considered examples of water management
solutions with potential to enhance productivity of upper Nueces Bay by increasing the
inundation regimes of the Nueces delta. Based on information compiled for the Bureau of
Reclamation Rincon Bayou diversion project, predicted MaxH flows were evaluated for
effectiveness in producing necessary inundations of the Nueces Delta. In the absence of the
Rincon Bayou diversion, MaxH monthly inflows during May and June (approximately 37,000
acre-ft per month or 1,215 acre-ft per day) are much lower than the amount calculated by Bureau
of Reclamation actually needed to cause overbanking into the upper Rincon Bayou
(approximately 4,170 ac-ft per day). Once the Rincon Bayou diversion project is implemented,
the river's minimum flooding threshold is lowered from 1.64 m (5.4 ft mean sea level) to
approximately 0.0 m mean sea level. This water project will allow not only more frequent
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diversions of freshwater into the upper delta; it also will provide daily, bi-directional non-riverine
flow events, such as winds and tides, to force water exchanées between the upper delta and the
river. Cumulative MaxH flows for May and June, if delivered in a pulsed release over 3-4
weeks, could supply 74,000 acre-ft (at a rate of 2,600-3,500 acre-ft per day) to the delta. Thus,
with the diversion project in operation, the cumulative MaxH flows could supply a sufficient
inflow pulse to inundate the Nueces delta during critical spring/summer months and maintain

productivity of this sensitive nursery area.

TARGET INFLOW RECOMMENDATION

TPWD recommends that: 1) a minimum of the cumulative monthly, April through
July, MaxH inflows (equivalent to 89,200 acre-ft) be delivered to Nueces Estuary during
the late spring/early summer season as the FWI target protective of the biological needs of
this estuary; 2) this cumulative spring/summer inflow be delivered in one or two pulsed
events during the April through July period to the critical nursery habitats in the Nueces
Bay delta region; and 3) monthly MaxH flows be supplied all other months of the year,
except during the fall season (September through November) of years when cumulative
spring/early summer MaxH flows have not occurred. In the latter case, cumulative MinQ
target flows for these three months (27, 510 acre-ft total) should be provided to maintain

refugia in the extreme upper bay, delta, and tidal portion of the Nueces River.

This cumulative spring MaxH flow essentially mimics the pulsed pattem of historical
hydrology characteristic of Nueces Estuary inflows. Delivery of spring pulses of this magnitude
correlates with higher historical catches demonstrated for important target fishery species (blue
crab, brown and white shrimp, and Atlantic croaker). These critical, pulsed spring flows appear
to maintain the estuarine wetlands located in the delta and to provide upper estuary nursery
habitat conditions when estuarine-dependent species are actively recruiting into the Bay. Dryer
conditions during the peak summer months (July through September) are expected to occur
naturally, and fishery species dependent upon the estuary at those times (e.g., white shrimp) can

tolerate suboptimal conditions if the estuary is provided with adequate inflows earlier in the year.



SECTION 1: INTRODUCTION

Each Texas estuary needs freshwater inflow (FWI) to maintain proper salinity regimes,
nutrient loading, and sediment inputs in order to support its unique, historical level of biological
productivity. Freshwater inflow from rivers, streams, and local runoff carries these necessary
materials into the estuary, and collectively, these inflow-dependent processes produce an
"ecologically sound environment.” In order that the limited freshwater resources of Texas may
be managed without biological impacts to the State's estuaries, TPWD, TWDB (Texas Water
Development Board), and TNRCC (Texas Natural Resources Conservation Commission) have
been charged with identifying the specific quantities and qualities of FWI needed to maintain
biological productivity in each receiving bay or estuarine system (Texas Water Code Sec.
11.1491). For water resources management purposes, TPWD describes this maintenance or
target flow as the level of FWI needed to sustain the historical productivity of economically
important and ecologically characteristic fish and shellfish species, and their associated
biological communities. This report summarizes the protocol and analyses that evaluate the
minimum target freshwater inflow needed to support healthy fishery communities’ characteristic

of the Nueces/Corpus Christi Estuary system.

The objectives, research design, and analytical methods for freshwater inflow studies
were originally detailed in the published report by the TWDB and TPWD, “Freshwater Inflows to
Texas Bays and Estuaries: Ecological Relationships and Methods for Determination of Needs"
(Longley, ed., 1994). This work, legislatively-mandated in accordance with TWC Sec. 16.058,
was performed to determine freshwater inflow conditions necessary to support a sound ecological
bay environment. TWDB developed the hydrologic modeling techniques and compiled data on
coastal physical and hydrologic factors, while TPWD evaluated trends from biological survey
data and provided ecological data synthesis. TWDB and TPWD staff worked together to
formulate acceptable constraints for the TXEMP model (see Appendix). The modeling
procedures from these earlier efforts (Longley, 1994) have since been further refined and
rigorously applied to two estuaries [see Pulich et al. (1998) for the Guadalupe Estuary and Lee et
al. (2001) for the Galveston Bay System].
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The modeling procedures jointly conducted by TWDB and TPWD quantitatively
integrate commercial fisheries harvest data and hydrological monitoring data through statistical
probability analyses, resulting in mathematical determination of inflow targets. The modeling
output consists of flow solutions that satisfy various constraint sets. Among the resulting flows
are two identified target flows, a minimum target flow, termed MinQ, and an optimum harvest
flow, termed MaxH. MaxH constitutes an optimal target flow to the estuary that is consistent
with maximum historical biological productivity as measured by fisheries-dependent commercial
harvest landings. The concept of MinQ implies there is a minimum flow threshold at the low
end of the FWI range, below which some functions of FWI become limiting to biological
production (whether it be maintenance of salinity, or the supply of nutrients, particulate organic
matter, or sediments). The MinQ target flow is distinct from the lowest subsistence flow, termed
MinQ-Sal, which represents the critical inflow level needed to maintain salinity only. At flows
between the critical MinQ-Sal level and MinQ target flow levels, biological productivity and
fisheries harvest become very unpredictable and, by definition, are significantly reduced from
even the average historical levels. During low-flow conditions below the MinQ level (e.g.,
during droughts), adequate salinity conditions may be maintained only in some estuarine areas,
which act as refugia supporting limited biological productivity. It is important to realize that
below the minimum, modeling-derived, target FWI (MinQ), estuarine health and productivity

will suffer, often severely.

1.1. Objectives

TPWD objectives in this verification analysis are to evaluate the effectiveness of the
predicted MinQ and MaxH modeled target inflows in supporting relative abundance of
characteristic estuarine fishery species and wetlands in each estuary. This includes both annual
and seasonal (= cumulative monthly) inflow amounts. Because MinQ-Sal (see above) is not
considered a target flow value (by definition it does not maintain reasonable historical biological
productivity levels in the estuary), no evaluation of this subsistence flow is conducted. Normally,

the starting premise (similar to a statistical null hypothesis) would be that MaxH inflows are



needed to maintain relatively high historical fisheries abundance and wetland nursery habitat
production. If, after verification analysis, MaxH proves to sustain this characteristic production,
MaxH would be the recommended inflow target. If MaxH does not meet the stated goals, such a
result would suggest that the constraints or other inputs to the TXEMP model would need to be
re-evaluated. This report 1) describes the TPWD independent verification analyses performed on
the MaxH target inflow predicted for the Nueces Estuary, and 2) evaluates relationships of MaxH

flows to observed biotic responses and historical inflow conditions in this system.
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SECTION 2: ANALYTICAL PROTOCOL AND MODELING OUTPUT

The protocol for verifying FWI target flows begins with review of the input data to the
optimization and hydrodynamic models. The complete analytical details, especially constraints
and other input data, for the Estuarine Mathematical Programming or Optimization Model
(TxEMP) are presented in the Appendix, compiled by TWDB staff.

TxEMP model solutions depend on limiting input constraints (or bounds) developed from
the historical 53-year hydrologic record (1941 — 1994) for the river basin and from concomitant
commercial fisheries harvest data reported by National Marine Fisheries Service. TWDB and
TPWD also formulated key salinity constraints in the TXEMP model for three different regions
of the Nueces Estuary (see Tables 2 - 4 in Appendix). These critical constraints were developed
using historical salinity data collected over 30 years, supplemented by continuous datasonde
readings in recent years. Salinity data from the 1950’s period when the drought of record
occurred in Texas were not available. These salinity bounds are also based on known salinity
tolerance data for many indigenous estuarine species, both flora and fauna. These broad,
monthly salinity values are not considered optimal limits, but rather the seasonal viability limits

for species and habitats typically found in the estuary.

TxEMP, which uses multi-objective functions and incorporates statistical uncertainty in
the inflow solution, produces a range of feasible solutions (MinQ to MaxH to MaxQ) that
simultaneously predict inflows and the corresponding commercial fisheries harvest (Matsumoto
1994). An important result of the optimization process is the delineation of an optimal, monthly
inflow pattern characteristic of the estuary. The monthly distribution of MaxH inflows is found
by allowing TXEMP to optimize for the maximum possible harvest, while limiting monthly
inflows to the monthly median values as the upper bound. The monthly distribution of MinQ
inflows is found by minimizing the inflows, while keeping the fishery harvest at or above the
specified targets. The MaxQ inflow is found by maximizing the inflows while keeping the same

fishery harvest targets as in the MinQ case. The monthly TXEMP output is then used as input to



the hydrodynamic circulation model (TXBLEND), to evaluate hourly and daily effects on salinity

distributions and bay circulation.
2.1. Review of TXEMP Model Results

The TXEMP model generates a performance curve (see Longley, 1994) that graphically
describes how varying amounts of total annual inflow affect fishery harvest. The performance
curve for Nueces Estuary (Figure 2.1) was produced by first finding the endpoints, the minimum
annual inflow (MinQ) and maximum annual inflow (MaxQ), which satisfy the model constraint
set. From this analysis, MinQ was found to be 115,640 acre-ft/year and MaxQ was 167,100 acre-
ft/year. In the next step, TXEMP was executed to optimize for fishery harvest (MaxH) within the
range of annual inflows between MinQ and MaxQ at a 50% salinity probability level.
Intermediate points on the harvest performance curve were generated by limiting the range of
possible inflows to narrow intervals while solving for MaxH. The optimal MaxH value was
found to be 138,500 acre-feet/year. Figure 2.2 shows graphically the monthly inflow distribution
under the MinQ and MaxH constraint scenarios, while Table 2.1 also lists these monthly flow

levels along with the 10™ and 50™ percentile inflows used as constraints for the model.

Total species harvest predicted by TXEMP for each inflow scenario ranged from 1.992
million pounds (MinQ) to 2.149 million pounds (MaxH) (Table 2.2). Despite the 16.6 %
difference between MinQ and MaxH levels, the difference in total predicted fisheries harvest
between the two cases (1.992 vs. 2.149 million pounds for MinQ vs. MaxH, respectively) is
small (only 7.3 %). MaxH flow produced slightly higher harvests of red drum, black drum,
spotted seatrout, and brown shrimp than did MinQ, but slightly lower amounts of blue crab. Both
cases produced slightly more (ranging from 26.7 % to 36.6 %) commercial harvest than the
model target of 70% historical mean harvest, and these increases were accounted for primarily by
brown shrimp (Table 2.2). Brown shrimp dominated the biomass harvest within this estuarine

system (47.5 % of the historical mean biomass).
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Table 2.1. Monthly Inflow Bounds (10" and 50™ percentile historical inflows) and Predicted
Target Inflows (MinQ and MaxH) for Nueces Estuary. Values are in acre-feet.

Month Inflow Bounds MinQ MaxH
10 50"
Jan 1,420 4,540 2,230 2,230
Feb 1,490 5,660 2,780 2,780
Mar 2,240 4,920 4,410 4,920
Apr 2,410 5,180 5,180 5,180
May 3,780 37,770 32,140 37,770
Jun 3,870 36,430 19,990 36,430
Jul 3,680 9,820 6,980 9,820’
Aug 3,790 9,750 9,750 9,750
Sep 3,610 23,740 11,040 9,600
Oct 4,380 18,680 8,690 7,560
Nov 2,660 7,780 7,780° 7,780
Dec 1,590 4,670 4,670 4,670
Total 34,920 168,940 115,640 138,490

' cumulative April - July total (89,200 ac-ft) should be delivered in 1 - 2 pulsed events to Nueces Bay
delta between April - July.

%cumulative fall seasonal total (27,510 ac-ft) should also be delivered in pulsed events to Nueces Bay
delta during September — November if spring MaxH pulses do not occur.

11



Table 2.2. Range of Historical Harvest and Predicted Harvest (in thousands of pounds)
under MinQ and MaxH inflow simulations.

Species Historical  Target MinQ MaxH
Mean (70% Mean)

Blue crab 236.5 165.5 165.2 161.4
Brown Shrimp 1067.9 747.6 1168.4 1275.9
White Shrimp 613.6 429.5 429.5 429.9
Red Drum 66.7 46.7 46.7 78.5
Black Drum 131.7 92.2 88.9 96.5
Spotted Seatrout 84.1 589 48.7 58.6
Flounder 46.3 324 453 479
Total Harvest 2246.8 1572.7 1992.0 2148.7

2.2. Comparison of MaxH Target Flows to Historical Hydrology

When the monthly inflow distribution is examined (Fig. 2.2), MaxH values equal the
monthly median values in 8 out of the 12 months, and the critical March through August period
stands out. When compared on an annual basis, relative to the annual median (348,000 acre-ft
for the period of 1941-1994), the MinQ and MaxH target flows both fall below the 10" percentile

of annual historic inflows (Figure 2.3).
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The monthly hydrographic record over a recent 21-year period from 1977 to 1997
illustrates that the inflow pattern for Nueces Estuary is highly pulsed or episodic in frequency
(Figure 2.4). Examination of monthly inflow amounts over these 252 months indicates that
monthly MaxH target flows are met only 63% of the time. Moreover, this record shows that the
estuary has predictably received most of its 14 largest pulses of inflow (those greater than
100,000 acre-ft per month) over the 21-year period in the two months of May - June (9 out of the
14 times = 64.3%). It is significant therefore that the higher spring monthly MaxH flows
overlap with these critical May - June pulses of inflow in these recent 21 years. Results
presented by Irlbeck and Ward (2000) also showed that the magnitude, duration, and timing of

high flow events into the Nueces Estuary system were also highly episodic.

2.3. Review of TXBLEND Modeling

The effect of annual and seasonal inflows predicted by TXEMP were assessed using
TXBLEND, the two dimensional, finite element hydrodynamic model developed by TWDB that
simulates estuarine circulation and predicts salinity patterns resulting from varying freshwater
inflow regimes. Annual and seasonal distributions of MaxH and MinQ inflows predicted by
TXxEMP were used as input for the TXBLEND model under two hydrological and meteorological
scenarios. Because the Nueces Estuary is characterized by highly pulsed inflow cycles (see
Figure 2.4), and exhibits a high degree of annual variability in climatological conditions, two
different hydrodynamic simulations (a DRY, warm scenario and a WET, cool scenario) were
carried out in order to compare the effects of MinQ and MaxH inflows. Actual tidal and climatic
conditions measured in 1988 - 1989 (a hot, drought period with 2-year average annual inflow of
only 62,691 acre-ft) were used as input for the DRY weather regime, while cooler, wetter
conditions during 1991 — 1992 (2-year average annual inflow of 695,750 acre-ft) were used to

simulate a WET weather regime.

The TXBLEND model computes salinity values over 2-hour time-steps at over 4300 grid

nodes in the Nueces Estuary (Corpus Christi Bay system). Simulated salinity regimes for the

13



Estuary resulting from the two different meteorological (weather) scenarios were illustrated by

two output formats of data:

1. Isohalines of average monthly salinity in 5 ppt increments were plotted to show the
salinity gradient for the estuary by month.

2. Time series plots for average daily salinity were graphed for the 2 year weather cycles at
two locations in the Estuary: a site in extreme upper Nueces Bay near the delta, and a
mid-bay site at the causeway crossing the junction between Nueces and Corpus Christi

Bays.

14
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SECTION 3: EVALUATION OF BIOLOGICAL RESPONSES TO TARGET
FRESHWATER INFLOWS

This Section presents the graphical and statistical analyses using observed fisheries
abundance and estuarine wetland distribution data to assess the predicted inflow targets. This
step in the protocol verifies or provides a "reality check” on the results predicted by the models.
The abundance of typical fishery species from actual sampling surveys in the estuary, along with
known salinity tolerance limits and nursery habitat requirements, are the bases for evaluating the
impacts of target FWI regimes. By coupling the hydrologic regimes with field survey data of
both dominant fisheries species and the distribution of estuarine wetlands, a picture emerges of
the community dynamics within the Nueces/Corpus Christi Bay System. By comparing effects
of modeled conditions on estuarine biota with those observed under actual inflow conditions, we
can infer whether or not target flows are reasonable and effective. Based on this fisheries-

independent biological impact assessment, a final FWI recommendation is proposed.

Although estuarine productivity can be assessed by a variety of criteria, we used relative
abundance of fisheries and wetland nursery habitat distributions as the primary indices to gauge
effects of the target FWI amounts. Biological monitoring and sampling data on the estuarine
fishery species and wetland habitat types were derived from literature sources, TPWD fisheries
surveys, and special project studies (Bureau of Reclamation, 2000). If inflow regimes, salinity
gradients, or other FWI-related factors were found to correlate with the presence or abundance of
selected indicator species (both flora and fauna), this would provide evidence of FWI regimes
necessary for the maintenance of estuarine health. Two major types of biological analyses were
performed: 1) Verification of the biotic effects of salinity gradients resulting from the
hydrodynamic model runs; and 2) Statistical correlations between representative biota and FWI

regimes under actual historical hydrological conditions.
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3.1. Effects of MinQ vs. MaxH Flows on Salinity Regimes

The TXBLEND hydrodynamic model predicts the salinity gradient patterns in the Estuary
system under specified inflow and weather conditions. Model verification analysis was
performed similarly to the two previous studies (see Pulich et al. 1998 and Lee et al. 2001) by
comparing the TXBLEND modeled salinity gradients to known distributions of fishery species or

their nursery habitat, thereby allowing an evaluation of salinity effects on critical estuarine areas.

Because output from TXBLEND consists of a grid map of salinities at hundreds of nodes
throughout the bay, GIS (Geographic Information System) techniques were used to evaluate
salinity maps of the model results for biological impacts. This procedure is described in detail in
Pulich et al. (1998). After each model run with the monthly MaxH or MinQ target flows, salinity
zone maps were generated with Arc/Info™ software (ESRI, Redlands, CA). Average monthly
salinity values at each of the model grid nodes were subjected to contouring using the Kriging
module from Arc/Info™ to produce isohaline contours in 5-ppt increments. Seven salinity zones
were delineated, encompassing a salinity range from near freshwater (oligohaline) to euhaline
seawater (> 30 ppt). Examples of these monthly salinity contour maps that depict the two
different weather cycles (DRY year = 1988 and WET year = 1991) are shown in Figures 3.1 to
3.8. To contrast the two target inflow cases, these figures show both the MaxH and MinQ
scenarios and a third map, representing the salinity difference between each case, for Nueces Bay

proper. Results are shown for March, May, September, and October of each year type.

Examination of these GIS plots reveals that during either representative hydrologic year-
type, a true salinity gradient is essentially lacking over most of the Estuary system. Generally,
salinities in Corpus Christi Bay proper are above 30 ppt (euhaline) all months of the year under
both MinQ and MaxH solutions. A highly compressed salinity gradient exists during the spring
months (May — June) only in Nueces Bay proper (Figures 3.2 & 3.6), and predominately under
WET weather conditions (1991, Fig. 3.6). This gradient ranges from high mesohaline (10 - 15

ppt) around the mouth of the Nueces River, to euhaline (30 - 35 ppt) near the mouth (lower end)
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of Nueces Bay. Later in the year, the majority of Nueces Bay again exhibits salinities similar to
Corpus Christi Bay, greater than 30 ppt in September 1988 (Fig. 3.3) and 25 ~ 30 ppt in October
(Fig. 3.4). It is primarily in the late summer of the WET year (1991) that salinities in the upper
estuary (near the Nueces Delta and Nueces River mouth) fall into the high polyhaline range (20 -
25 ppt; see Fig. 3.7). Interestingly, salinities reach low mesohaline values (5-10 ppt) in the open
waters of the upper estuary region for only a few days during summer of the WET MaxH
simulation (Fig. 3.11). This compressed gradient presumably reflects the small volume ratio of
the freshwater inflows from the Nueces River relative to the larger volume of seawater in the
Corpus Christi Bay system, coupled with the normally high evaporation rates seen within this

system.

The seasonal changes in salinity gradients indicate that there is relatively little difference
between the MinQ and MaxH inflow scenarios throughout the course of the year. Salinity
difference maps show that both MinQ and MaxH salinity zones are essentially identical from
January through March (Figures 3.1 & 3.5). By May, during both WET or DRY year scenarios
(Figures 3.2 & 3.6), a gradual difference in salinity zones between the MinQ and Max H cases
occurred, but only in the extreme upper to middle reaches of Nueces Bay. However, even these
differences between MinQ and MaxH are rather small, with the largest differences observed in
May — June 1988 being only 1 to 2 ppt. This trend reverses from June through September (late
summer, see Figures 3.3 & 3.7), and by October, the difference between MaxH and MinQ
becomes insignificant (Figures 3.4 & 3.8). The similarity in salinity zones remained until the end
of the simulation periods. In summary, modeled seasonal differences in salinity zones (< 2 ppt)
between MinQ and MaxH flows are not considered to reflect significant hydrologic differences

between the two flow cases.

3.2. Salinity Effects on Upper Nueces Bay and Delta

Estuarine-dependent fishes rely on the availability of suitable nursery habitat to serve as
an important component in their early life history stages (Lyczkowski-Shultz et al. 1990). Unlike
the Atlantic coast, where physical transport of planktonic larvae through tidal passes into
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estuarine nursery grounds by means of a two-layered, vertically stratified current flow is well
documented (Weinstein et al.1980; Henri et al. 1985; Hettler et al. 1997), Gulf of Mexico
estuaries tend to be shallow and well mixed, with predominantly wind-driven circulation (Raynie
and Shaw 1994). Direct coupling of the ocean/estuary system (rivers feeding into marshes,
encompassing secondary bays and primary bays, ultimately leading to the ocean) is frequently
broken, with some bays completely isolated from significant freshwater inflow sources.
Variations in the intensity of physical processes (FWI, currents, tides, winds) can result in
differential abilities of competent individuals to leave the plankton and settle onto areas with

favorable juvenile habitat (Sogard 1989).

The shallow estuarine habitats in Nueces Bay that serve as nursery grounds, including
emergent marsh, submerged vegetation, and intertidal flats, are physically isolated from the
discharge point of the Nueces River. Processes other than salinity driven, stratified current flow,
mediates the physical transport of eggs and larvae into these nursery habitats. Although lacking a
direct connection to the river, the Nueces Delta is still considered an important nursery ground
for many commercially important finfish and shellfish (Henley and Rauschuber 1981; Ruth et al.
1990). Therefore, the need to maintain the wetland communities in and around Nueces Bay as
viable nursery habitats, through sufficient FWI regimes, is particularly important for many

estuarine-dependent species.

A habitat map of the Nueces estuary (Pulich and Hinson, 1996), based on classified 1992
Landsat thematic mapper imagery, was used to show that a majority of the estuarine emergent
wetlands (a prime nursery habitat found within this system) are concentrated in upper Nueces
Bay, and particularly in the Nueces River delta region (Fig. 3.9A). Much of the regularly-
inundated saline marsh within Nueces Bay is comprised of bulrush (Scirpus maritimus) and
cordgrass (Spartina alterniflora and S. patens), species that are fairly sensitive to hypersalinity
and require regular inundation regimes (White et al. 1983; Pulich 1994; Dunton and Alexander-
Mahala 2000). These fixed wetlands (as well as submerged, hard-bottom substrata, e.g., clam
beds, oyster reefs) become severely degraded when high salinities and desiccation make such
areas uninhabitable.
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Evaluation of the modeled salinity gradients suggests a significant potential for excessive
salinities (even hypersalinity) and/or marsh soil desiccation to develop without MaxH or higher
flow levels, thus stressing the sensitive, low-lying marsh delta vegetation (Dunton and
Alexander-Mahala, 2000). A highly compressed, elevated salinity gradient (e.g., see Figures 3.3
& 3.7), found in most cases except under MaxH during a WET year, could accelerate loss of
nursery habitat in the Delta region, with a concomitant reduction in productivity for ecologically
and commercially important faunal species (Zimmerman et al. 1990). Sessile species found in
these communities are unable to adjust their tolerances when the salinity gradient exceeds their
physiological tolerances (Montagna and Kalke 1992). It is only motile faunal species that can
move further up into the headwaters of the Bay or into the tidal portions of the Nueces River to

seek refuge near freshwater sources that can tolerate these conditions.

Prior to the Rincon Bayou channel diversion project, inflows higher than 4,100 acre-ft per
day (2,100 cfs lasting one day) concurrent with high tidal cycles were necessary to produce river
overbanking with inundation of the upper delta and marsh interior (Irlbeck and Ward 2000).
Upon implementation of this project, daily, bi-directional non-riverine flow events such as winds
and tides forcing water exchanges between the upper delta and the river, as well as river
overbanking inundation, can be achieved (Bureau of Reclamation 2000). Passing through the
cumulative MaxH inflow levels for May and June in a controlled pulse (a total of 74,000 acre-ft
of water over the course of 4 weeks or at a rate of 2,600 ac-ft per day) could achieve many of the

positive biological benefits identified in the Bureau of Reclamation demonstration project.

3.3. Time Series Analysis of Salinity at Critical Bay Sites

Time-series analysis was conducted on the salinity data from the TXBLEND circulation
model at two key model nodes in the Bay. The two nodes consisted of a site in extreme upper
Nueces Bay near the delta, and a mid-bay site at the Nueces Causeway between Nueces and
Corpus Christi Bays (Figures 3.10 - 3.13). Results for both the MinQ and MaxH cases during
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DRY vyears (1988 — 89) and WET years (1991 — 92) are included. This technique allowed for
graphic demonstration of the daily salinity fluctuations at the selected locations produced by
model inflows. Mean daily salinities computed from TXBLEND were also compared to the

salinity constraints developed for the optimization model listed in Table 3.1.

Table 3.1. Upper and lower salinity constraints used in TXEMP optimization model for Upper

Nueces Bay and Nueces Bay Causeway model nodes.

Oct Nov Dec

Site Jan Feb Mar Apr May Jun Jul
Upper 5 5 5 5 1 1 2
Nueces 36 36 36 32 23 20 25 25

Tk
" E

5 30 30 30

N

Nueces 5 5 5 5 5 5 5 5 5 5 5 5
Causeway 35 35 35 35 30 25 35 35 30 35 35 35

Modeled solutions in both the MinQ and MaxH cases exceed salinity bounds at the Upper
Nueces Bay and Nueces Causeway nodes at times. Relatively large deviations (> 8 ppt ) from the
salinity constraints are frequent during spring and summer in both cases. MinQ and MaxH
showed a close parallel in salinity variations through time in Figures 3.10 and 3.11 for the upper
Nueces Bay Node, regardless of weather year type. The most prominent differences between the
MinQ and MaxH solutions are that MaxH salinities show a lag compared to MinQ salinities
when salinities are rising (due to higher MaxH flows) and, conversely, a more rapid drop when
salinities are falling (due to increased MaxH flows). When compared to the model constraints,
salinity exceedances (or predicted salinities outside the constraint range) in spring and summer

indicate that MinQ flows would be more stressful on the overall habitat than those associated

with MaxH (Fig. 3.10, Upper Nueces node; Fig. 3.12, Nueces Causeway node). MaxH flows
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mainly showed significant exceedances (often 8 ppt) during the low flow years at the Upper
Nueces Bay node. Characteristically, extended periods of low salinities usually occurred with
inflows during late spring and early summer, or with freshets in mid- to late winter (Figures 3.10

& 3.11).

Further calculations were performed to determine the number of days over the simulation
period that the predicted model salinities exceeded the target salinity constraints (Table 3.2). This
analysis gives a quantitative measure of how effective the target inflows from the optimization
model (TXEMP) solution are at maintaining beneficial salinity ranges over yearly cycles. During
the DRY, low-flow years (1988 - 89), MaxH and MinQ are partially effective at maintaining
salinity bounds: for the upper Bay node, approximately 27 % (for MaxH) and 39 % (for MinQ)
of the days exceeded constraint values. For the Nueces Causeway node, approximately 63 % (for
MaxH) and 64 % (for MinQ) of the days exceeded salinity constraints under DRY conditions.
These exceedances occurred during spring and mid- to late summer, when hypersalinity and soil
desiccation in marshes are highly deleterious (Bureau of Reclamation, 2000, Chapter 4). In
contrast, during WET, high-flow years (1991-92), both MaxH and MinQ were effective in
maintaining daily salinity values, with only 2 — 5 % daily exceedances at the upper bay node, and

25 — 31% daily exceedances at the Nueces Causeway site.

Based on this time-series analysis, the seasonal effects of salinity increases on wetlands
habitat distribution (see Fig. 3.9A) must be carefully considered. The increases in salinity during
late spring and summer months at the upper Nueces Bay node would be of concemn for wetlands
habitat quality, with these habitats being primary nursery areas for shrimp and young-of-the-year
fishes (Gosselink 1980). Estuarine-dependent species utilize these habitats for shelter and food
resources during the critical periods (post-larval and juvenile stages) of their life cycles (Boesch
and Turner 1984; Ruth et al. 1990). These delta nursery habitats then, become the focus of

attention for management of inflows to the estuary during low flow periods.
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Table 3.2. Number of days that simulated salinities exceeded the model constraints at
the Upper Nueces Bay and Nueces Causeway nodes. Simulated salinities for
MaxH and MinQ inflows were estimated under either DRY year (1988 and
1989) or WET year (1991 and 1992) conditions.

-3 3 -1 __13

Inflow Condition

Nueces Causeway

Upper Nueces Bay
DRY YEARS - 88/89
MaxH -1988 90 215
MaxH -1989 106 245
MinQ -1988 136 222
MinQ -1989 150 250
WET YEARS -91/92
MaxH -1991 12 117
MaxH -1992 0 68
MinQ -1991 39 138
MinQ -1992 0 91
22
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3.4. Statistical Correlations between Fisheries Abundance and Historical Hydrology

The net seaward movement of estuarine waters, combined with tidal flux, causes
problems for biota utilizing the estuary; generally related to either export from or recruitment to
the estuary (Boehlert and Mundy 1988, Kneib 1997). Estuarine resident species (residing within
the estuary throughout their life cycle) face the recruitment problem of an export of their early
life history stages. Transient species (species that periodically utilize the estuary for feeding or
spawning as adults) must first locate appropriate habitat; and then, if they spawn there, face the
same larval export/transport problems as the resident species. Estuarine-dependent species
(those utilizing the estuary as a nursery ground for the early portion of their life cycle) typically
spawn well offshore and their eggs and larvae must be transported into coastal and estuarine
nursery grounds against this net seaward flow (Valenisi et al. 1997). These species (including
several commercially important ones) typically have extended larval periods and their progeny
are subjected to the widest degreer of physical processes, which can ultimately affect fisheries

recruitment (Green and Lee 1994).

For this analysis, the relative abundance of eight estuarine target species was used to
assess the adequacy of the target FWI amounts. The source of fish and shellfish data was the
TPWD Coastal Fisheries Resource Monitoring Program, which has been conducting bag seine,
trawls, and gill net surveys in Nueces Estuary since 1978 (Kana et. al. 1993). This survey
program, based on probabilistic random sampling, collects 20 bag seine samples from around
each bay system each month (although prior to 1992, sampling effort was only 10 samples per
month, and prior to 1982, 6 samples per month). Along with recording the relative abundance of
organisms (as catch per unit effort, or CPUE), qualitative hydrographic data are also collected at
each sampling site. The Coastal Fisheries standardized sampling program and its use in
assessing species distribution and abundance have been thoroughly discussed in the original Bays

and Estuaries Report (Longley 1994, see Chapters 6 & 7; Lee 1994, Boyd and Green 1994).
The eight target species included both shellfish (white and brown shrimp, and blue crab)
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and finfish (Atlantic croaker, Gulf menhaden, bay anchovy, striped mullet, and spot) that were
identified as the dominant (most abundant) species collected in the bag seines and trawls in the
Nueces Bay system (see report by Lacson and Lee 1997). Bag seine catch data were chosen for
this analysis because the juvenile and subadult animals collected in bag seines represent the life
history stages most dependent on the estuary for nursery habitat. In this case, such nursery
habitat is located in the upper estuary, particularly in the bay-head delta region. As mentioned in
the previous section, the delta and upper estuary regions are considered the most sensitive
habitats in the estuary to FWI fluctuations and stress. Thus, it was expected that any secondary
effects of FWI on these nursery habitats would be reflected by juvenile animal abundance (e.g.,

CPUE results) from the bag seine samples.

For the time period covering 1978 — 1997, monthly average relative abundance was
calculated only for the time of the year (= season) that a species normally occurred in the bay (see
Pulich et al. 1998). By deriving the monthly average CPUE of each target species, the time
frame in months of highest abundance was delimited. From this analysis, the seasons of peak

monthly occurrence for each species in the Nueces Estuary were determined to be:

Blue Crab (Mar - July); Brown Shrimp (Apr - July); White Shrimp (July - Nov);
Atlantic Croaker (Jan - May); Gulf Menhaden (Apr - June);
Bay Anchovy (Aug — Nov ); Spot (Feb - July); Striped Mullet (Jan - July).

3.5. Analytical Approach and Hypothesis

In our previous studies of the Guadalupe and Trinity-San Jacinto Estuaries (Pulich et al.
1998, Lee et al. 2001), we demonstrated correspondence between species abundance and salinity
gradients in the bays, where salinity was used as a proxy for FWI to establish FWI — species
relationships. For the present analysis of the Nueces Estuary, with an extensive salinity gradient
lacking except for the upper reaches of Nueces Bay proper (see Figures 3.1 — 3.8), we developed
a different analytical approach to demonstrate the effect of freshwater inflows on species
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abundance. As a modified analytical approach, we chose to examine statistical correlations
between seasonal abundance of key fisheries species and observed monthly surface inflows to the
Nueces Estuary. Total surface inflow hydrology data supplied by TWDB were used (monthly
data including both gauged and ungauged inflow which are corrected for diversions and return
flows) so as to be directly comparable to inflow amounts derived from the TXEMP modeling.

The historical time period from 1978 to 1997 was used because it coincided with the period for

which Coastal Fisheries sampling data were available.

The analysis examined statistical trends in bay-wide species abundance (measured as
average seasonal CPUE) related to total surface inflow, or cumulative inflow, for the same
months of each species’ seasonal occurrence in the bay. For example, total surface inflow for
brown shrimp consisted of flows summed from April through July; for blue crab, flows were
summed from March through July, etc. Species abundance was further coded to reflect two
different hydrologic year types: HIGH-FLOW YEARS vs. LOW-FLOW YEARS. These flow
year designations were based on a cutoff or threshold value equal to the cumulative seasonal
MaxH target inflows over the corresponding months of each species occurrence. For the spring-
summer season (April through July), this cumulative MaxH threshold amount is 89,200 acre-feet.
The objective was to determine if there was any difference in the relative abundance of the target
species under inflow regimes greater than or less than the MaxH amount. This would provide
presumptive evidence that MaxH inflow levels are sufficient to support the historical levels of
fisheries production within the Nueces Estuary, or whether inflows above the MaxH solution

produce characteristically higher levels of fisheries production.

3.6. Statistical Analyses

Figure 3.14 for brown shrimp displays a typical graph of the raw bag seine catch data.
The cutoff value for MaxH flow (89,200 ac-ft) is marked on each graph to show how abundance
data were partition into HIGH-FLOW and LOW-FLOW years. This graph illustrates several
points about the datasets. Upon cursory examination, the graph appears to show a poorly defined
relationship between cumulative inflows and mean CPUE for the target species. Further
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examination, however, shows that in several years, mean CPUE values cluster at very high flow
levels, and are beyond the range of most other flow data (> 340,000 acre-ft in this case). Despite
the unique seasonality identified for each target species, a distinct gap over the 19-year range of
inflow data occurred because of the same three years (1981, 1987, 1992) for all species tested.

An additional important feature is that mean CPUE was generally reduced at these high flow
values, implying a negative feedback operation at these very high flow levels. To some extent,
this resembles the response of the performance curve produced by the TXEMP model, with
fisheries catch decreasing beyond some optimal inflow level. Three species (blue crab, white
shrimp and Gulf menhaden) showed the most severe reductions at these high flows. Because
such high flow years would obviously skew the CPUE vs. inflow relationships over the low to
moderate range of flows, the decision was made to exclude these years from the next phase of

statistical analysis.

Figure 3.14 also underscores the very high variation found in the CPUE datasets, which is
not unexpected for biological sampling of organisms with patchy or overdispersed distributions
(see Sokal and Rohlf 1981; Neter et al. 1985). To satisfy the assumption of homogenous
variance, and correct for positive mean to variance correlations, data were logarithmically
transformed prior to analysis [Logio (N + 1)]. After transformation, simple linear regression
analyses were then performed on each of the target species. Figures 3.15 — 3.18 present results
using log-transformed data for brown shrimp, blue crab, Atlantic croaker, and white shrimp.
Significantly positive relationships between inflow and average CPUE over 13 to 16 year time
periods were identified for blue crab (r =4.31; df = 15; p = 0.001; R? = 0.57), white shrimp (¢ =
3.05,df=12,p=0.011; R? = 0.46), brown shrimp (¢ = 2.03; df = 15, p = 0.022, R?=0.227), and
Atlantic croaker (t = 2.45, df = 14, p = 0.028; R? = 0.676). Most other species showed positive
CPUE trends with increased inflow, but in each case the regression relationship was poor R¥s

ranging from 0.002 to 0.09) and the p values were not significant (ranging from 0.331 to 0.800).

In the case of white shrimp, timing of FWI appears to be a more critical factor than the
flows corresponding directly to the months of white shrimp abundance (viz. July — Nov., see Fig.
3.19 where a negative trend is indicated). Antecedent inflows during the spring and summer
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months of April through August produce a significant positive trend between CPUE and inflows
(Fig. 3.18), in contrast to the situation with the actual flows during fall (when the physical
recruitment of white shrimp takes place). This suggests a more complex effect of the FWI on
species like white shrimp and bay anchovy, which enter the bay later in the year. The data (not
shown) for bay anchovy also showed a similar trend with antecedent spring inflows. Inflows
earlier in the year presumably help to prepare the nursery habitat by producing favorable food,

shelter, and other habitat conditions for these late-year species.

After species-specific MaxH values were used to separate the hydrologic year types, a
statistical comparison was run on the two groups of catch data representing LOW-FLOW and
HIGH-FLOW conditions, excluding the three very high inflow years. If the homogenous
variance assumption was met, an unpaired t-test was utilized to test for differences in the group
means, otherwise the unequal variance t-test was used (Freund and Wilson 1993). Significant
differences in the case of blue crab, Atlantic croaker, white shrimp, and brown shrimp are shown
in Table 3.3.

While four of the finfish species (bay anchovy, spot, menhaden, and mullet) were not
significantly different (all had p values > 0.05), all but Gulf menhaden followed the general trend
of having higher relative abundance in HIGH-FLOW years. In some respects these results should
be considered conservative, since they were obtained using pooled catch data for the entire bay
system and many of the samples consisted of low catch values, with only a few samples
containing high numbers of individuals. This exemplifies the problem caused by correlating
abundance of a patchily distributed organism with a general linear model. Still, it is notable that
seven of the eight species examined showed at least a general trend of higher abundance under
HIGH-FLOW conditions as compared to LOW-FLOW conditions.

27



Table 3.3. Observed seasonal abundance (average CPUE * STD) of target species at low and
high inflow levels (defined as inflows lower or higher than the species-specific MaxH
cutoff value). Data are based on bag seine samples from 1978 to 1997 by Coastal
Fisheries Resource Monitoring Program. Samples for all 20 years are not represented

in t-test analysis due to elimination of very high-flow years and a few outlier years.

TARGET SEASON OF AVG CPUE AVG CPUE P VALUE OF
SPECIES ABUNDANCE ATLOW AT HIGH T-TEST
INBAY INFLOWS INFLOWS

White Shrimp ' July - Nov 17.29 £ 8.48 40.44 £ 13.54 | Sig. (P=0.011)
Brown Shrimp April — July 29.19+£10.60 | 47.16 +£17.05 | Sig. (P=0.022)
Blue Crab Mar. — July 3.77£0.76 6.59 +2.79 Sig. (P=0.001)
Gulf Menhaden April — June 85.85 £ 140.63 | 56.06 £ 72.11 | n.s. (P=0.800)
Atlantic Croaker | Jan. - May 0.44 +£0.18 1.62+1.02 Sig. (P=0.028)
Bay Anchovy ’ Aug. — Nov 5.08 +6.82 7.926.82 n.s. (P=0.331)
Spot Feb. — July 17.80+13.63 [ 19.60+11.21 | n.s. (P=0.488)
Striped Mullet Jan. — July 5.44 + 3.54 7.03 +4.84 n.s. (P=0.572)

"'Low and high inflows based on April through August period.
2 Low and high inflows based on June through September period.

3.7. GIS Analyses

Representative GIS plots were produced that depict species’ spatial distributions
and relative abundance patterns (as CPUE) within the estuary system. This GIS technique
allowed visualization of subtle spatial patterns that might provide better insights into the FWI
effects. Using salinity data collected simultaneously with the bag seine samples, salinity zones
were contoured by GIS as described previously. Then, by plotting GIS overlays between species
abundance and contoured salinity zones, species’ distribution patterns can be correlated with the
observed salinity gradient. Figures 3.20 - 3.22 demonstrate these spatial relationships between

CPUE relative abundance and the salinity gradient for blue crab, brown shrimp, and Atlantic

28

N




—3 3 T3 713

3

—

3 7731 T3 3 13

T3

—3 3

croaker, respectively, in the Nueces Estuary system. CPUE distributions are plotted separately
for both HIGH-FLOW (labeled Wet Years) and LOW-FLOW (labeled Dry Years) catch data,
with the flow year designations determined according to the species-specific MaxH cutoff values

previously described.

These observed salinity plots corroborate the compressed salinity gradient in Nueces Bay
previously seen with the TXBLEND model. Even with cumulative WET spring inflows,
exemplified by blue crab and brown shrimp (Figures 3.20 & 3.21), salinities still averaged > 25
ppt in Corpus Christi Bay during these wet years. A reasonably large salinity zone of 10 — 20 ppt
occurred in Nueces Bay for these years with WET springs, while DRY year salinities remained
almost entirely above 30 ppt. Interestingly, the observed salinities in all DRY year cases were
considerably higher in Nueces Bay (> 30 ppt) than the salinities for the MinQ model runs (Fig.
3.2), consistent with these observed DRY years providing less than the MinQ seasonal target

flows.

Nueces Bay proper is generally regarded as ecologically important nursery habitat within
Nueces Estuary. This is further supported by the limited location of the mesohaline salinity zone
(10 - 20 ppt) within Nueces Bay proper identified from the GIS plots of Coastal Fisheries
Monitoring salinity data, in agreement with salinity patterns from the TXBLEND solution. We
therefore used the GIS overlay data to test for differences in average CPUE between HIGH-
FLOW (= Wet) and LOW- FLOW (= Dry) years for samples directly influenced by the
mesohaline salinity gradient within Nueces Bay. For two of the three cases examined (Atlantic
croaker and blue crab), parametric test assumptions were not met even after a logarithmic
transformation of the data, and the Mann-Whitney U test (the non-parametric analog of the two-
sample ¢-test) was used to test the null hypothesis that the two groups came from populations

having the same distribution (Sokal and Rohlf 1981).

For Atlantic croaker (Fig. 3.22), visual inspection of the plot suggested a higher catch rate

in Nueces Bay proper during Wet years, although no significant statistical difference between the
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two flow years was actually found (U = 4,876; p = 0.146, xz approximation = 2.12 with 1 df).
Relative abundance in Wet years followed the general pattern identified from the larger, system-
wide species abundance analysis (see Statistical Correlations between Fisheries Abundance and
Historical Hydrology), with higher mean CPUE in Wet years (3.29 + 15.63) as compared to Dry
years (0.86 + 3.50). Blue crab (Fig. 3.20) did have significantly higher abundance (U = 3389.5,

p=0.003; %> approximation = 9.01 with 1 df) in Nueces Bay proper during Wet years compared
to Dry years (mean CPUE = 5.33 £ 6.93, Wet vs. 3.73 £ 6.89, Dry). Brown Shrimp (Fig. 3.21)
also displayed a higher trend in Nueces Bay during Wet years (mean CPUE = 109.9 £ 201.32)
than Dry years (mean CPUE = 67.45 * 143.95), but it was not significant (! = -1.73, df = 153; p =
0.085).

These results indicate that Nueces Bay proper may comprise a specific environment under
the higher flow conditions that concentrates these estuarine species. Favorable environmental
conditions as a result of increased inflows would include the combinations of preferred salinity
regimes, increased food supplies, and essential nursery habitat factors (Mueller and Matthews
1987). These three species exhibited similar behavior in Nueces Bay to that from literature
reports below, and this behavior implies a strongb dependence on moderately high seasonal

inflows (greater than MaxH) for maximal production.

White shrimp: This species was not collected in bag seine samples in significant
numbers until mid-summer into fall. White shrimp are known to prefer salinities from low to
moderate (5 - 20 ppt), but can tolerate a fairly wide salinity range (Pattillo et al. 1997). However
it has apparently adapted in Nueces estuary to a slightly higher salinity regime compared with
that found in San Antonio Bay (see Pulich et al. 1998). In the Nueces Estuary, the peak
abundance was recorded at flows two- to three-fold higher than MaxH. White shrimp showed a

significant correlation between average CPUE and antecedent inflows from the spring and early

summer, not summer-fall inflows.

Brown shrimp: This species was mainly collected in April through July, and peak
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abundance occurred at flows two- to three-fold greater than MaxH. Brown shrimp did occur late
in the year but its numbers were generally low in trawls (< 2 per 10-min tow). The species
occurs in higher numbers than white shrimp in this estuary, probably reflecting its higher salinity
preference. However, bag seine catches showed higher numbers in Nueces Bay proper in high

flow years compared to dry years, with salinities ranging from 10 to 20 ppt.

Blue crab: Juvenile blue crab have been reported in waters of 0 to 30 ppt salinity, adult
males were found in waters < 10 ppt, and gravid females inhabited waters of > 20 ppt (Pattillo et
al. 1997). In Nueces Bay, crab peak abundance (CPUE ~ 6 per tow) in bag seine samples was
recorded during wet years. Like white shrimp, blue crab may be adapted to higher salinity waters

(15-25 ppt) in Nueces Bay compared to San Antonio Bay.

Gulf menhaden: This species has been reported from freshwater to hypersaline areas,
and abundance in the Corpus Bay area generally conformed to this pattern. Non-gravid and
developing adults occupy mid-range salinities in the deeper parts of estuaries, with high
abundances at 20 — 25 ppt reported (Shaw et al. 1985). There was little direct correlation
detected between CPUE and FWI regime.

Atlantic croaker: This species is estuary-dependent and displayed a salinity preference
similar to blue crab and brown shrimp. In Texas and Louisiana bays, both juvenile and adult
croaker have been found most abundant in waters < 15 ppt. In Nueces Bay, Atlantic croaker
seasonal abundance peak was recorded in Feb. through May, and peak CPUE was found at flow
regimes two-fold greater than MaxH.

Bay anchovy: In Texas bays, juvenile and adult anchovy have been collected at salinities
from 0.5 to 40%c. In Nueces Bay, this species had a seasonal peak in late summer and fall.
Similar to white shrimp, the mean CPUE was not correlated with the actual fall inflow regimes.
Rather there was a positive trend between relative abundance and antecedent inflows from spring

and summer.
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SECTION 4: MAINTENANCE OF FRESHWATER INFLOWS TO NUECES BAY
NURSERY HABITAT

The Nueces Delta system is an estuarine nursery ground disjunct from major riverine
input. Though lacking a direct link to freshwater inflow, the vegetated habitats found within the
delta are focal points for populations of fish and crustaceans, especially during their larval and
juvenile life stages (Texas Department of Water Resources 1981). These salt marshes act as
nursery grounds for the developing species, providing both protection from predators and
supplying a rich source of food, either directly or through transport from surrounding tidal creeks
(Stout 1984; Bao et al. 1989; Chamberlain and Barnhart 1993). Occasionally, large flood events
spill over the river’s north bank and inundate the delta with freshwater. These sporadic floods,
usually tied to spring frontal system passage or tropical storm activity in the fall, supply fresh
water to plant communities, transport vegetation and/or sediment detrital materials, provide

nutrient import, and buffer the salinity in the bay.

As noted in previous sections, this lack of a direct connection to FWI (except in the high-
flow, overbanking events) can lead to soil hypersalinity and decreased mash production. The
natural salinity stress conditions found in the marsh are attributed to the semiarid climate, low
annual rainfall, and hot, dry summers often producing water deficits (evaporation can exceed
precipitation by > 152 cm per year; see Longley 1994). Concomitant to the natural hypersalinity
conditions present, human-induced FWI restrictions (the construction of upper watershed
reservoirs and the diversion of large amounts of FWI for municipal, industrial, and agricultural
uses) have greatly reduced the opportunities for freshwater flooding events into the deltaic
marshes. Since the completion of Choke Canyon Reservoir in 1982, it has been estimated that
the annual, mean volume of fresh water reaching the Nueces Delta has been reduced by greater
than 99% compared to previously (Irlbeck and Ward 2000). Current conditions are such that
nearly all river flow events bypass the delta, providing Nueces Bay with freshwater inflow but

doing little to mitigate the environmental stress factors found within the marsh nursery habitats.
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The operating policies of the two watershed reservoirs (Lake Corpus Christi and Choke
Canyon Reservoir) call for monthly pass-through releases of water for bay and estuary
environmental needs. These pass-through targets, first incorporated in 1992 and based on
preliminary model estimates of MinQ, are designed to mimic the natural seasonal inflow patterns
into the estuary system. Additionally, these target amounts are adjusted on a sliding scale to
reflect overall system storage and are tied directly to the combined monthly inflows to the
receiving reservoirs. The combination of sporadic rainfall patterns inherent within the watershed
and the reservoirs dampening effect of capturing most high-flow events leads to pass-through
amounts that are typically well below the flooding threshold of the river’s north bank. These
conditions decrease the overall probability that beneficial fresh water can reach the critical

nursery habitats found within the delta.

A five year study (conducted between 1994 and 1999) by the United States Department of
the Interior, Bureau of Reclamation, considered some of the limiting constraints of the
hydrography of the Nueces estuary and attempted to restore some historic flow patterns of the
river into the delta region. One of the expressed purposes of this study was to increase the
opportunity for natural freshwater flow events into the upper Nueces Delta (by excavating an
overflow channel along the northern riverbank and thus lowering the minimum flooding
threshold). Some of the information gained from this project indicated that fresh water passing
through the upper delta provided a more direct benefit to the estuary ecosystem than water by-
passing the delta and flowing directly into Nueces Bay (Bureau of Reclamation 2000).
Furthermore, they recommended that timing the reservoir pass-throughs (they call for larger,
quarterly or possibly semi-annual releases) to the observed seasonality of the ecology of Nueces
Delta (both floral and benthic infaunal communities) would be more directly beneficial to the
delta ecosystem than the smaller, monthly releases now mandated. The idea of larger, “pulsed”
inflow events reflects more realistically the natural FWI variability to which the organisms within

the estuary have become adapted.
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SECTION 5: DISCUSSION AND INFLOW RECOMMENDATION

The preceding analyses have shown that observed hydrologic inflow regimes, as well as
the modeled MaxH inflow scenario, do not typically produce a broad salinity gradient ranging
from oligohaline to open ocean waters over most of the Nueces/Corpus Christi Bay system.
Rather, a rudimentary salinity gradient under MinQ and MaxH flow regimes is typically
compressed into the upper portions of Nueces Bay proper. This situation is quite different from
previous systems examined (e.g., Galveston Bay or San Antonio Bay) and no doubt correlates
with the extremely pulsed hydrology and inflow dynamics, combined with the very high
evaporation rate observed in the Nueces watershed. This greatly emphasizes the importance of
the limited moderate-salinity zones in Nueces Bay proper as fishery nursery area. The analysis
also raises interesting questions of how FWI provides and maintains a productive, high quality

estuarine habitat for the fishery species within this system.

Both MinQ and MaxH inflows were fairly similar in their hydrologic effects on the
estuary, based on spatial extent of the modeled salinity gradients produced and also the time
course of salinity exceedances at two geographic locations within the bay. Salinity values
predicted by both target flows at upper and lower Nueces Bay nodes were generally within the
TXEMP model salinity constraints, except during dry-weather years typical of drought. During
these dry years, however, MaxH inflows appeared more protective than MinQ of key fishery and
wetland habitats in upper Nueces Bay, especially during critical spring seasons. Based on the
salinity exceedance time series analysis, decline of nursery habitat conditions for sensitive
shellfish and finfish species in Nueces Bay proper would be expected when inflows drop below

MaxH target values.

A separate statistical analysis of TPWD fisheries-independent sampling data, covering the
period from 1978 — 1997, correlated seasonal relative abundance (CPUE) of eight dominant
species to observed hydrology, using MaxH monthly values as a cutoff between dry (Low-flow)
and wet (High-flow) years. Significant statistical relationships between bag seine CPUE values
and total cumulative surface inflow showed that four of the species (brown and white shrimp,
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blue crab, and Atlantic croaker) benefited from spring seasonal inflows two- to threefold higher
than the corresponding cumulative seasonal MaxH flow value (which was 89,200 acre-ft for the
April through July period). While not statistically significant, three other finfish species (bay
anchovy, spot, and striped mullet) all followed the overall trend of higher average CPUE at
inflows higher than the cumulative MaxH cutoff. The importance of spring and early summer
inflows was further emphasized by the results for white shrimp and bay anchovy. Although
recruitment into the bay occurs later in the year for these species, their abundance also showed a
strong positive correlation with antecedent inflows during spring and early summer compared to
inflows during their actual months of occurrence. These results demonstrate that seasonal
spring/summer inflow pulses higher than cumulative MaxH consistently support increased
production of these characteristic Nueces Estuary fisheries species, as well as better protect the

fisheries nursery habitat in the upper estuary and delta wetlands region.

This statistical analysis of fisheries independent data and corresponding seasonal
hydrology also establishes a logical basis for using cumulative seasonal MaxH amounts as an
inflow target value. Because of the young life-history stage of these target species, the positive,
cumulative biological benefits of the seasonal FWI are considered more significant than
individual months within a season. For each species, success of that year’s total production is
more dependent on the sum of the inflows over those months (i.e. seasons) when the species
occurs in the bay. As a result, we advocate that freshwater inflow relationships should not be
determined strictly on a monthly basis where months are treated as independent of one another. A
more appropriate approach is to allow for evaluation of cumulative monthly effects, reflecting the

seasonal inflow requirements of target species.

The pulsed, historical hydrology pattern for the Nueces Estuary represents an
environmental stress to which the biota have adapted. Ecologically, the estuarine biota respond
to the extreme hydrologic events, whether flooding or drought, as opposed to “average” or even
“median” frequency events. Therefore, it would be appropriate to model the freshwater inflow

needs of the Nueces Estuary biota based on these pulsed hydrology conditions. Future refinement
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of the FWI analysis protocol should seek to incorporate the variance for these extreme conditions

into calculation of inflow targets.

Recommendation

TPWD therefore recommends as a FWI target, that the total April through July
cumulative monthly MaxH inflow (equivalent to 89,200 acre-ft) be delivered during the
spring/summer season (April through July), to protect the biological needs of the Nueces
Estuary. In all other months not specified in conditions below, MaxH monthly target flows
would be sufficient. The cumulative, spring/summer target flow is recommended as a
minimum value with two stipulations. First, if these high spring monthly flows do not occur
(e.g., during low flow years, but not necessarily a drought), then cumulative MinQ target flows in
the fall months (specifically September through November, total flow equivalent to 27,500 ac-ft)
should also be provided to maintain a refugium in the extreme upper bay and tidal portion of the
Nueces River. Second, the cumulative spring/summer inflow amount should be delivered to
upper Nueces Bay proper in proximity to the delta, the most critical habitat in the estuary. This

cumulative amount could be delivered in one or two pulsed events in any of the four months

(April through July).

This cumulative spring/summer MaxH flow is postulated to mimic the effect of the
pulsed hydrology pattern characteristic of this system. Pulsed flows much higher than May or
June individual monthly MaxH values are necessary to cause river over-banking and delta
inundation. Thus discharge at higher flow rates is critical to sustaining the Nueces River delta
estuarine nursery and refugium functions. This sensitive region can only be enhanced by over-
banking flows that provide flushing of the Rincon Bayou and other delta marsh systems.
Historical seasonal flows in spring and early summer may in fact have a direct stimulatory effect
on the wetlands habitat, and only secondary effects on salinity response by the fisheries
organisms themselves. An expanded area of nursery habitat from large, periodic inflow pulses

would enhance recruitment conditions of key fishery species.
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Management of river flows to supply these FWI targets is regarded as an implementation
issue, and obviously, such management depends on the availability of river waters and return
flows. When available flows within a river are lower than the target due to climatic conditions
(e.g., drought), flows to the estuary should decrease correspondingly. The challenge is to
develop watershed management strategies that provide the estuary with targeted or critical flow
amounts at nearly the same frequencies that occurred in the past, retaining as much historical
variability at higher flows (greater than MaxH) as possible. Under moderate river flow
conditions, however, the frequency of reduced inflow levels should not be artificially increased
beyond historical occurrences. When sufficient river flows do occur, the receiving estuary should
receive the recommended amount(s) prior to new permits for diversions being implemented.
During low flow periods, meaningful water conservation plans should be implemented, thereby

balancing the overall needs of the water users with the needs of the environment.
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Values and Constraints for the TXEMP Model Used in the
Freshwater Inflow Analysis of the Nueces Estuary

Executive Summary

The Texas Estuarine Mathematical Programming (TXEMP) model was developed to estimate the
amount of freshwater inflow needed to maintain economically productive and ecologically healthy
estuaries. It was developed in response to legislative mandates described in the Texas Water Code
1.003, 11.147, 11.1491, and 16.058. Execution of TXEMP is the culmination of a cooperative effort
between the Texas Water Development Board (TWDB) and the Texas Parks and Wildlife
Department (TPWD), with the Texas Natural Resource Conservation Commission (TNRCC)
providing additional oversight. The Texas Department of Health has also contributed to this effort.

TXxEMP accounts for biological needs and ecological requirements by incorporating regression
equations linking historical salinity data with current and preceding monthly inflows. TXEMP also
accounts for biological productivity by incorporating regression equations linking historical harvest
data with corresponding bi-monthly inflows. Seven species were considered: blue crab, brown
shrimp, white shrimp, red drum, spotted seatrout, black drum, and southern flounder. Historical
freshwater inflow data were determined based on standard TWDB hydrology methods, and gaged
flow at two stations on rivers and creeks flowing into the Nueces Estuary. Execution of TXEMP
yielded minimum inflow (MinQ) of 115,640 acre feet per year (ac-ft/yr), maximum inflow (MaxQ)
of 167,070 ac-ft/yr, and maximum total harvest (MaxH) at inflow of 138,490 ac-ft/yr. It is the
consensus of the Bays and Estuaries teams from both TWDB and TPWD that inflow solutions
between MinQ and MaxQ satisfy all constraints in the optimization model, and produce biologically
feasible results for the estuary system.
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INTRODUCTION

Values and constraints for the TXEMP mathematical programming model were developed for
salinity conditions in the estuary, historical fisheries harvest values, freshwater inflows, ratios of
species harvest, nutrient loading, sediment loading, salinity-inflow equations, and harvest-inflow
equations. All values and constraints were based on historical data collected in the estuary, or in
the rivers flowing to the estuary. Methods for determining values and constraints (Matsumoto et
al. 1994) were consistent with the requirements in TEXAS WATER CODE 11.147, for
maintenance of beneficial inflows to sustain fish and shellfish productivity, and the estuarine life
on which they depend. Use of values and constraints in the TXEMP mathematical programming
model generally follows the procedures described in sections 8.1 and 8.2 of Longley (1994). A
partial analysis of inflow needs for the Nueces Estuary by Powell and Matsumoto (1994)
produced results similar to those given here in greater detail.

SALINITY

Salinity zones

Six areas with a substantial amount of salinity data were defined for the Nueces Estuary, two
within Nueces Bay, three within Corpus Christi Bay, and one within Redfish Bay (Table 1).
From these six areas, three were selected to represent the longitudinal salinity gradient from the
river inflow points to the sea: head of the Nueces Estuary, Mid-Nueces Bay, and Mid-Corpus
Christi Bay.

Table 1: Salinity (practical salinity units, psu) statistics for salinity zones of the Nueces Estuary.
“*" = zones used in TXEMP analyses.

Salinity Zone Median Mode Mean Std. Dev. Range N
Head of Nueces Estuary* 21.60 3200 19.70 10.34 0.00-47.00 242
Mid-Nueces Bay* 27.60 30.00 26.35 8.75 0.06-4775 728

Mid-Corpus Christi Bay* 30.65 30.00 30.55 5.15 793-49.11 480
Point of Mustang Island 29.52 3000 29.27 4.58 13.25-43.00 299

Naval Air Station 31.24 30.00 3146 493 11.71 -49.00 288
Redfish Bay 26.51 28.00 25.71 3.58 19.31-34.00 28
Data

Salinity data were obtained from the Texas Water Development Board (TWDB) Coastal Data
System and Bay and Estuary Datasonde programs, Texas Parks and Wildlife Department
(TPWD) Fishery Monitoring Program, Texas Natural Resource Conservation Commission
(TNRCC) Statewide Monitoring Network, and Texas Department of Health Shellfish Sanitation
Monitoring Program. Salinity data were available for years 1969-1998 and reported in parts per
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thousand (psu). All data before December 1986 and some data after that date came from
measurements made during site visits at various times throughout the year. Beginning in late
1986, ambient water quality data were collected in site with automated instruments (Hydrolab®
Datasondes) through a series of monthly deployments. Datasondes took measurements every 1
to 2 hours while deployed.

To keep Datasonde data from overly influencing less-frequently collected historical single-
measurement data, Datasonde data were averaged daily, and sub-sampled every 15" day. The
15-day interval was chosen because the median interval between non-automated data samplings
was 14 days, with a mean of 23 days, and this interval had been used before. This interval makes
the Datasonde monitoring data roughly consistent with non-automated data, in terms of average
temporal coverage. The 7-day binning method used previously was also tried. Regression
results of binning and sub-sampling were very similar. The sub-sampling method was chosen
because it is a simple approach and avoids the artificial reduction of natural variation that can
occur with averaging.

Salinity bounds

Salinity bounds were selected based primarily on salinity frequency distributions and biotic
limits. Frequency distributions of salinity measurements for each month were examined for each
zone to provide information about historical monthly ranges of salinity. The 25" and 75"
percentiles were of greatest interest because salinity values in this interval represent half of all
measurements, and fall in the mid-range salinity values for the zone. Biotic salinity limits from
scientific literature and reports for major estuarine plant and animal species, compiled in tables
5.2.2 and 6.7.3 of Longley (1994), were used in the evaluation. With this information, the
salinity bounds for the analysis were selected by TWDB and TPWD staff, and are presented in
the tables below. In all cases, upper salinity bounds were set above the 75™ percentile of the
historical salinity distribution. In most cases, lower bounds were set below the 25™ percentile of
the historical salinity distribution.

Table 2: Salinity bounds (psu) for the Head of Nueces Estuary salinity zone.
Month Lower Bound  Upper Bound

January 5.0 36.0
February 50 36.0
March 50 36.0
April 50 320
May 1.0 23.0
June 1.0 20.0
July 20 25.0
August 20 25.0
September 5.0 25.0
October 50 30.0
November 50 30.0
December 5.0 30.0
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Table 3: Salinity bounds (psu) for the Mid-Nueces Bay salinity zone.

Month Lower Bound  Upper Bound
January 50 35.0
February 5.0 35.0
March 50 350
April 50 35.0
May 5.0 30.0
June 50 25.0
July 5.0 35.0
August 5.0 35.0
September 5.0 30.0
October 5.0 35.0
November 5.0 35.0
December 5.0 35.0

Table 4: Salinity bounds (psu) for the Mid-Corpus Christi Bay salinity zone.:

Month Lower Bound  Upper Bound
January 20.0 370
February 20.0 370
March 20.0 37.0
April 200 37.0
May 20.0 37.0
June 20.0 37.0
July 20.0 37.0
August 20.0 37.0
September 20.0 37.0
October 20.0 37.0
November 20.0 37.0
December 20.0 37.0

Salinity chance constraint bounds

The salinity chance constraint is the minimum probability that the calculated salinity will satisfy
the lower salinity bound or the minimum probability that the calculated salinity will also satisfy
the upper salinity bound. For TXEMP analysis, the salinity chance constraints for the lower and
upper salinity bounds were set to 50% at all sites.
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HARVEST TARGET
Data

Fisheries harvest is used as a surrogate for estuarine productivity. Harvest data (Ibs.) for blue
crab, brown shrimp, white shrimp, red drum, spotted seatrout, black drum, and southern flounder
were obtained from Texas Landings, a cooperative publication of Texas Parks and Wildlife
Department (TPWD) and U.S. Department of Interior (USDOI) for the years 1963 to 1969. Data
were also obtained from a cooperative publication of the TPWD and U.S. Department of
Commerce (USDOC) for the years 1970 to 1978. Thereafter, the landings information came
from TPWD publications. Brown and white shrimp data were taken from the National Marine
Fisheries Service Gulf Coast Shrimp Database.

Harvest targets and historical values

Harvest targets were defined for each species as 70% of mean historic harvest. The harvest target
for each species is the value for which TXEMP must maintain a specific probability of achieving.
This probability is defined by the harvest chance constraint, and is usually 50%.

Table 5: Mean, minimum, maximum and target values for species harvest (1000 1bs.), and for
white shrimp catch per unit effort (CPUE).

Species Mean Min. Max. Target
Black Drum 131.69 8.0 400.8 92.2
Flounder 46.32 5.9 120.6 324
Blue Crab 236.46 7.7 973.6 165.5
Red Drum 66.27 2.6 214.1 46.7
Spotted Seatrout 84.08 12.0 192.3 58.9
Brown Shrimp 1067.94 51.8 2451.5 747.6
White Shrimp 613.59 88.1 1357.2 429.5

White Shrimp (CPUE) 76.6 159.04 332.8 53.62

Harvest chance constraint bounds

The harvest chance constraint is the minimum probability that the calculated harvest equals or
exceeds the harvest target. For TXEMP analysis, the harvest chance constraint was set to 50%,
corresponding to the mean. Although setting chance constraints higher than 50% may
theoretically produce a more statistically reliable solution, it also has the undesirable effect of
reducing the range of feasible inflow solutions.
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INFLOWS
Data

The inflow bounds in the analysis represent statistical measures of the combined flow, also called
surface inflow, of all runoff from the land to the estuary for the period 1941 to 1994. Combined
flow is the sum of gaged and ungaged flow. Gaged flow is the measured flow at the last U.S.
Geological Survey (USGS) stream gage on a river or creek that flows toward the estuary. USGS
gages in the Nueces area used to determine inflows were: the Nueces River near Mathis (id#
08211000) and Oso Creek at Corpus Christi (id# 08211520).

Ungaged flow is the water reaching the estuary whose source is below the farthest downstream
flow gage, or from an ungaged catchment area (i.e., water is not measured by the gages).
Ungaged flow consists of three hydrologic components: modeled runoff from land areas below
the farthest downstream gage or ungaged catchment areas (simulated using TXRR, a calibrated
rainfall-runoff model); return flow from discharges to rivers, streams, or estuaries that occurs
below the farthest downstream gage; and diversions of freshwater from rivers and streams that
occurs below the last downstream gage. The data used in simulating modeled flows were daily
precipitation data from the National Weather Service, and precipitation stations operated by the
TWDB. Ungaged watersheds might not contain any precipitation stations, or might contain
several. Precipitation was distributed on a watershed basis through the use of a Thiessen network
to allocate precipitation to specific ungaged watershed areas. Return flow values came from
records of measured and estimated flows for Self-reporting Wastewater Discharges from the
TNRCC. Diversion values come from the Water Use databases managed by TNRCC as part of
the Water Rights Permitting Program.

Ungaged flow was calculated by adding modeled runoff and return flow, and subtracting
diversions. Data sources for gaged and modeled flows provide daily data so flow amounts can be
calculated in units of ac-ft/day. The data for return flows and diversions, however, are reported
to the TNRCC as monthly totals. Combined flow (ac-ft/day) is calculated as the sum of gaged
and ungaged flows. To calculate daily combined flows, estimates of daily return and diversion
flows are made by dividing monthly values by the number of days in each month.

In the Nueces Estuary, annual inflows have ranged between 42,551 and 2,744,260 ac-ft/yr, with
median inflow of 347,696 ac-ft/yr and mean inflow of 581,779 ac-ft/yr. Three different sets of
flow bounds were defined to constrain the solution. Monthly flow bounds limited modeled flow
in any monthly period. Seasonal bounds, based on 2-month seasons, corresponded with the 2-
month seasonal periods used in harvest equations. Annual bounds were used to limit modeled
flows on an annual basis. All bounds were based on combined inflow statistics for the 54-year
period 1941 to 1994.
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Monthly upper and lower inflow bounds

The lower monthly inflow bound was set to the 10™ percentile of all inflow data used in the
analysis. The upper bound was set to the median of all monthly inflows for the same period in
order to develop achievable recommended inflows. Consequently, inflow requirements, as
calculated by the TXEMP model, can not exceed the median inflow for any month.

Table 6: Lower and upper monthly inflow boundaries (1000 ac-feet.).
Month Lower Boundary  Upper Boundary

January 1.42 4.54
February 1.49 5.66
March 224 4.92
April 241 5.18
May 3.78 37.77
June 3.87 36.43
July 3.68 9.82
August 3.79 9.75
September 3.61 23.74
October 4.38 18.68
November 2.66 7.78
December 1.59 4.67

Seasonal (2-month) upper and lower inflow bounds

The bounds for bimonthly (i.e., seasonal) flows constitute a separate set of constraints from
monthly flow bounds. Both constraints must be satisfied for an optimum solution. Seasonal
bounds were set close to the sum of monthly flow bounds for corresponding pair of months. The
sum of the January and February lower bounds totaled 2,900 ac-ft.; the sum of the upper bounds
for the same period totaled 10,200 ac-ft. In the table below, the January-February seasonal lower
bound was set to a value lower than the sum of the monthly bounds (2,800 ac-ft) while the
January-February seasonal upper bound was set to a value higher than the sum of the monthly
upper bounds (11,000 ac-ft). The seasonal bounds are wider than the sum of monthly flows to
allow the TXEMP optimization model plenty of maneuvering room to search for an optimal
solution.

Table 7: Lower and upper bimonthly inflow boundaries (1000 ac-ft.).
Bi-month Lower Boundary Upper Boundary

Jan.-Feb. 2.8 11.0
Mar.-Apr. 4.6 11.0
May-Jun. 7.5 76.0
Jul.-Aug. 1.3 21.0
Sept.-Oct. 7.9 44.0
Nov.-Dec. 4.1 14.0
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Annual (12-month) upper and lower inflow bounds

A series of annual inflow bounds were set to constrain a series of TXEMP runs in order to
provide intermediate points between MinQ and MaxQ. These points were used to define the
performance curve.

HARVEST RATIOS

The TXEMP model permits harvest equations to be weighted for individual species in the
calculation of the objective function. Weighting allows control of the relative importance of
individual harvest equations in the optimization routine. If the weight of an equation were set to
zero, that equation would not contribute to total harvest included in the objective function.
Consequently, the optimization results would be independent of that species’ contribution to
harvest. TXEMP would calculate the harvest of that species, but would not include the
contribution of that species in optimization. In the same manner, the harvest equation of one
species can be weighted to contribute more to the harvest total of the objective function than
another species’ equation. Originally, this was considered to be a convenient way to allow
testing of different management options. Unfortunately, the nonlinear nature of some equations
occasionally caused calculated harvest for some species to be greater than historically observed
levels. To remedy this unrealistic tendency, which typically occurred at extremes of inflows, a
new constraint was added to refine the optimization routine. The new constraint was designed to
ensure that the harvest of any species compared to the total harvest of all species in the analysis
remained within the bounds of a defined range. This constraint is called the harvest ratio and is
based on historical harvest data from the estuary. The constraint guaranteed that the relative
harvests of species from the optimization model remained within ranges that have been observed
for the estuary. Using constraints reduces the problem of the model calculating a solution that
provides exceptional harvest for one or two species to the detriment of others.

Data

Ratios were calculated from monitoring (grams/hectare, g/ha) and commercial harvest (dockside
landings, 1bs) data and compared. TPWD calculated biomass ratios using bag seine data
(catch/ha) converted to grams/hectare (g/ha). Data were converted by species according to
Fontaine and Neal (1971), Pullen and Trent (1970), and Harrington et al. (1979). TWDB
calculated harvest ratios based on the data described in the Harvest Target Section.

Harvest ratios were used in the execution of TXEMP because the harvest and biomass ratios were
similar for the dominant species (white and brown shrimp), but different for other species, and
because harvest data were used to derive fishery regression equations. The lower and upper
bounds for harvest ratio constraints were set at mean plus or minus 1.15 times the standard
deviation. However, TXEMP was run with the lower and upper ratio bounds set to 0 and 1,
respectively, for all species in order to avoid over-constraining the problem. The results were
analyzed against the harvest ratio bounds.
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Harvest ratio bounds

Table 8: Biomass and harvest mean ratios, and upper and lower harvest bound constraints.

Species Biomass Harvest Ratio Lower Bound Upper Bound
Ratio
Black Drum 0.016 0.062 0.001 0.123
Southern Flounder 0.002 0.022 0.006 0.038
Blue Crab 0.135 0.111 0.000 0.265
Red Drum 0.006 0.031 0.000 0.064
Spotted Seatrout 0.007 0.040 0.006 0.073
Brown Shrimp 0.581 0.502 0.118 0.886
White Shrimp 0.253 0.233 0.045 0.420

MINIMUM INFLOWS TO MAINTAIN SUFFICIENT NITROGEN LOADING TO THE
NUECES ESTUARY

The objective of this section is to recommend a minimum inflow requirement based on the
sufficiency of nutrients supplied by historical inflows to support biological productivity in the
estuary. Nitrogen is the limiting nutrient in most estuaries (Whitledge 1989a; 1989b; NRC,
2000). Preliminary analysis of water quality data collected between 1984 and 1989 indicates the
Nueces Estuary is nitrogen limited; dissolved inorganic nitrogen (DIN) concentrations were
below detection limits nine times more often than dissolved phosphorus (DIP) concentrations.

Data preparation

Concentrations of dissolved solids and nitrogen species were obtained for the Nueces River and
Oso Creek by monitoring programs of the TNRCC and the USGS. Monthly loads were calcu-
lated, using the FLUX program (Walker, 1996). The FLUX program computes monthly
loadings, based on flow-concentration relationships. Where inflow-concentration relationships
were not strong, a flow-weighted average concentration calculated by the program was the basis
for loading estimates.

Input concentrations for northern ungaged watersheds were estimated as the flow-weighted
average from the Aransas River, assuming similarity of soils and land use. Rainfall runoff inputs
from urban Corpus Christi areas were computed using urban runoff average concentrations
(Baird, et al. 1996).

Total dissolved solids, where not measured (residue at 180° C), were estimated from
conductivity or salinity via regression. Total nitrogen (TN) is defined as TKN + NOs + NO,
(total Kjeldahl N, nitrate N, nitrite N), with TKN measured from unfiltered water. TN in stream
inputs was also estimated from regression on DIN (NH4+NO,+NO3) or from NO3, when TKN or
other data were unavailable. Bay TN levels were computed from NO3 and TP, based on
significant regression from monitoring data, 1968-1989. Values of nitrogen species reported as
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less than detection limits were assigned a value of half of the detection threshold.

The concentration of nitrogen in rainwater was obtained from the National Atmospheric
Deposition Program (NADP, 1993), which maintains a site at Beeville, roughly 61 km inland
from Nueces River delta. Nitrogen inputs from rain were based on Theissen network estimates
of precipitation volume falling directly on the bay surface (Longley 1994), and on the combined
concentrations of nitrate and ammonia nitrogen in NADP samples, averaged over several years
(0.53 mg/l). Dry deposition may add significantly to atmospheric contributions of some
materials, such as nitrogen. Although measurements of dry deposition at the Beeville NADP site
were available, the methods used to collect dry samples may admit contamination. Thus, these
data are not included in the present analysis. Instead, dry deposition was estimated to be 60% of
wet deposition (Wade, 1998).

Wastewater return flows include volumes from many different sources with widely variant
concentration profiles. Only sources not already included in gauged inflow volumes were
considered. Volumes of discharges were obtained from self-reporting records on file at the
TNRCC. Concentrations reported as part of waste discharge permit compliance often do not
include all nutrient species required in the budget. Armstrong and Ward (1998) estimated local
point sources collectively to average 14 milligrams nitrogen per liter (mg N/I). They also
estimated contributions of oil and gas industry produced-waters from which brine input was
estimated.

Materials Loadings and Budgets

Water, total dissolved solids (TDS), and total nitrogen budgets were prepared for four years, two
low inflow and two high inflow, to test our understanding of nitrogen sources and sinks. The
water budget combined freshwater hydrologic data with net flows between bays from the
circulation model. TDS is assumed to act conservatively, with no diminution in the estuary
except for hydraulic processes. Thus, TDS budgets are used to check data source completeness
and budget component specifications, and to adjust transport components. This was required
because the tidal entrainment component of net hydraulic transport had to be estimated. Details
of budget procedures and results for water and TDS budgets are reported in Brock (2000).
Confidence bounds on budget figures are based on a first-order estimate from uncertainty levels
associated with each contributing element.

In each budget (Table 9), more nitrogen leaves the estuary than can be accounted for as inputs,
indicating some model parameters may not be adequately estimated. There are a number of
possible explanations. The largest sinks in the budget are also sinks with considerable
unknowns. Denitrification was measured at only four stations within the estuary. The budget
deficit may be the result of inappropriate extrapolation of these measurements to the whole
estuary. Inputs from, and losses to, the Gulf of Mexico are based on poorly known
concentrations from the lower bay and the near-coastal Gulf. The range of uncertainty connected
with inflows and outflows to the Gulf is +/- 10%, and may not be supported by better data.
Moderate errors in concentrations or rates associated with the biggest loss terms (i.e., to Gulf, to
Laguna Madre, denitrification) could easily explain much of the deficit. Failure of the budget
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analysis may indicate that our knowledge of the system is not complete enough to allow us to
model directly system processes to obtain a nitrogen requirement.

Table 9. Total nitrogen budget for the Nueces Estuary, 108 gN y".

1988 1989 1991 1992
Confidence Confidence Confidence Confidence
Load Load Load

Bounds Bounds Bounds Load Bounds
Gaged 22 21-23 13 12- 14 223 210-236 1722 1619-1825
Ungaged 72 58 -87 24 20-29 275  223-333 693  561-838
Wastewater 823  494-1235 681 409 -1022 1058  635-1587 1026  738-1354
From Aransas 882  715-1068 689 558 - 834 1106  789-1179 1457  1227-1833
From Gulf 709 574 --858 1107  897-1340 1079  874-1306 1870  1515-2263
From Laguna 840  680-1016 908  736-1099 845  686-1024 1203  974-1454
To Aransas 21 25--17 -49 -59~-40 -82 95— -69 225 224--173
To Gulif -1185  -1433--960 22101 -2542--1702  -2306 -2801--1875  -5193  -6251--4185
To Laguna -1699  2055--1376  -1645 -1991--1333  -1600 -1938--1297  -1819  -2190--1466
Storage 108 97-119 2347 381--312 0 0-0 187  166-203
Deposition 452 282-625 185  146-228 944 589 -1307 1002 624-1386
Brine input 2 1-2 2 1-2 2 1-2 2 1-2
N-fixation 408 204 - 612 408 204 - 612 408 204 - 612 408 204 - 612
Burial -669  -1004--335 -669  -1004--335 -669  -1003 --334 -669  -1003--334
Denitrif 2771 -3602--1940 2771 -3602--1940 22771 -3602--1940 2771 -3602--1940
Fisheries -176  -264--88 -150 -225--75 -199  -299--100 -157  236--19
Balance -2202  -2738--1588 3714  -4624-.2753 -1687 -2152--1404 -1265  -1756--546

Nutrient Loading and Inflow Relationships with Estuarine Productivity

Nutrients available to fuel productivity rise with inflow up to a point. Above this point, estuary
flushing rate and physical transport of nutrients out of the estuary reduce the effects of loading.
Eutrophication-related problems in the Nueces Estuary are expected to increase if the loading
threshold is exceeded, leading to more frequent occurrences of anoxia and toxic algal blooms.
The threshold above which problems begin to occur may be determined by biological community
complexity. In Texas bays, where light commonly limits primary production, the threshold for
problems may be higher than it would be in clearer waters. However, higher turbidity in Texas
bays also means that seagrasses suffer biogenic light limitation at a lower level of nitrogen
loading, as phytoplankton increase. Seagrass decline is but one example of how increased
nitrogen loading alters the quality and quantity of production.
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Nueces Estuary Nitrogen Status

The Nueces Estuary receives moderate nitrogen loading; of major Texas estuaries, it is second
lowest in terms of kg/m3, and third lowest in load per residence-time and volume. However,
productivity in the estuary may not be limited by nitrogen supply. Given total organic carbon
loading of 11 g C/m%/yr (Table 4.3.1, Longley, 1994), and average phytoplankton carbon
production of 310 g/mzlyr (Stockwell, 1989; Flint et al., 1985), the Nueces Estuary exceeds the
eutrophic estuary threshold proposed by Nixon et al. (1995).

Nutrient loading to the Nueces estuary should also be evaluated in the context of relative rates of
export versus retention. The system has a high physical "dissolved concentration potential”
(NOAA/EPA, 1989), meaning the estuary will retain nutrient inputs, and become more easily
over-loaded and eutrophic. Recent documentation of hypoxia in the main portion of Corpus
Christi Bay (Ritter and Montagna 1999), and problems associated with nuisance algal blooms
(Bricker et al. 1999) also indicate the estuary has high productivity that is likely caused by a more
than adequate nutrient supply.

Some inference about the estuary nitrogen status can be made from monitoring data. DIN,
dissolved inorganic nitrogen, is the sum of ammonium, nitrate, and nitrite nitrogen. At
concentrations of DIN < 1.0 uM (0.0142 mg/1) estuarine phytoplankton are limited by nitrogen
availability (Dortch and Whitledge, 1992). Data from TWDB Corpus Christi Bay and Nueces
Bay monitoring stations, 1968 through 1989, indicate DIN concentrations were below detection
limits (< 0.01 mg/1 for each N species) 350 times out of 1062 samples, whereas ortho-phosphate
concentrations were below detection limits only 126 times. Both nitrogen and phosphorus were
below detection in 58 samples. Thus, nitrogen limitation is likely to be more common than
phosphorus limitation, although low nitrogen concentrations are not common. Based on DIN
concentration data, the estuary appears to have more nitrogen than required to support present
production indicating an upper nutrient loading threshold for the Nueces Estuary may be as
pertinent to the health of the system as the determination of a minimum loading requirement.

Nueces Estuary Recommended Nitrogen Input

The purpose of this nutrient budget is to estimate a nutrient constraint based on nutrient inputs
that promote, or are consistent with, characteristic system productivity. The nutrient budget
approach is ideal because it is based on a detailed model of nutrients in the system that allows
system components to fluctuate with inflows and nutrient inputs. However, the data necessary to
adequately calibrate such a model is difficult to obtain and often not available with sufficient
precision. Although the purpose of the nutrient constraint is to identify a minimum loading
required by the bay, it may not be appropriate to assume that maintenance of present nutrient
loading rates is consistent with desirable productivity levels, because the Nueces system has
characteristics that may predispose it to eutrophication.

Another means of estimating a nutrient constraint is to determine the minimum nitrogen load
required to maintain characteristic system productivity. This approach begins with an estimate of
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historical nitrogen loading to the system. Prior to urbanization and extensive agricultural
development in the basin, inflows to the estuary would have provided nitrogen at rates
determined by concentrations found in streams not affected by man’s activities. The estuary is
assumed to have been healthy and productive under such conditions.

We can estimate drainage basin loadings prior to anthropogenic activities that increased stream
nutrient concentrations. Nutrient concentrations in streams draining various landuse types have
been estimated (Omernik 1976). Inferences can be made about routine loadings to an estuary
based on vegetative communities of its watershed. Data on nutrient concentrations in rangeland
runoff in the Nueces and neighboring watersheds are available from Baird et al. (1996). From
these data, a reasonable estimate of natural stream concentrations is roughly 0.7 - 0.9 mg N/l In
addition, Twidwell and Davis (1989) documented nutrient concentrations in stream segments
identified as relatively un-impacted. From their data, an un-impacted stream TN concentration
average is 1.35 mg N/1, compared to a modern flow-weighted average near 1.99 mg N/ for the
Nueces Estuary tributaries, and 3.63 mg N/ for tributaries and wastewater combined.

The un-impacted inflow TN concentration can be combined with median inflow volume to
produce the normal historic nitrogen load to the Nueces Estuary. Using median inflows
compensated for diversions, a non-anthropogenic TN load is estimated to have been 523-10° g
N/yr from the Nueces drainage basin. This historic input serves as a target minimum nitrogen
load, capable of supporting an estuary productivity historically characteristic of the system.

A nitrogen loading of 523 10% g N/yr would be delivered by approximately 117,000 ac-ft/yr
inflow, at present volume weighted average stream concentrations. With reference to TN loading
computed for recent years, above, it is clear that wastewater return flows now supply the estuary
with a TN load higher than would be characteristic of non-anthropogenic inputs. A drainage
basin combined inflow target of 117,000 ac-ft/yr would meet the minimum estuary nitrogen
requirements. This flow is approximately a 9th percentile annual volume.
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SEDIMENT ESTIMATES FOR FRESHWATER INFLOWS

A good deal of data related to sediment inflow to Nueces Bay is available. USGS gage #
08211000 has been collecting flow data on the Nueces River near Mathis, TX since September
1939. This site is approximately 50 miles upstream of where the river empties into Nueces Bay.
The TWDB has collected daily sediment samples at this site from February 1942 to September
1989. Most of this data is in electronic format that can be easily analyzed.

For this investigation, flow and sediment data were divided into three groups as shown in Table
10. These groupings conform to the dates of completion of major reservoir projects within the
Nueces River watershed. The old Mathis Dam, less than a mile upstream of the USGS gage site,
was completed on July 24, 1934. No flow or sediment data were collected prior to that time. On
April 26, 1958, Wesley E. Seale Dam was completed at a site between the USGS gage and the
old Mathis Dam site. The Seale Dam created a large impoundment that submerged the old
Mathis Dam. Choke Canyon Dam was completed on the Frio River, a main tributary of the
Nueces River, on October 12, 1982. Observed sediment load versus flow data for the three
periods are shown in Figures 1 through 3.

Table 10. Available Flow and Sediment Data for Nueces River near Mathis, TX.

Between Seale and Post Choke
Pre Seale Dam Choke Canyon Dams Canyon Dam
Dates Prior to 4/26/58 4/26/58 to 10/11/82 After 10/12/82
Flow Data
Observed 9/1/39 to 4/25/58 4/26/58 to 10/11/82 10/12/82 to 9/30/99
Sediment Data

Observed 2/1/42 to 4/25/58 | 4/26 to 8/31/58, 10/1/64 to 10/11/82 | 10/12/82 to 9/30/89
Modeled 9/1/39 to 1/31/42 9/1/58 to 9/30/64 10/1/89 to 9/30/99

Using observed data, equations of the following form were developed:
S=A*Q°"

where S is the expected sediment load per day in tons, Q is the daily flow in cfs-d, and A and B
are coefficients that vary with the range of flow and the time period. Coefficients A and B were
chosen to minimize the sum of squared errors between observed and predicted sediment load
over the specific flow ranges. Results are shown in Figure 4 and Table 11.

The equations were used to model sediment load for days when sediment data were not available.
By combining observed and modeled data, a complete series of annual sediment loads was
developed for the period from 1940 to 1998. Results, shown in Figure 5, demonstrate a
decreased sediment supply to Nueces Bay over this period. In addition to the Wesley E. Seale
and Choke Canyon Dams, other factors such as changes in land use and practices within the
watershed may have contributed to the reduction in sediment load.
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Modeled and observed data were also used to create the double-mass curve shown in Figure 6.
Note the sharp change in slope in 1958, about the time Seale Dam was built. The slope of the
curve remains relatively constant, however, after completion of Choke Canyon Dam in 1982.

Flow frequency curves for the Nueces River at Mathis, TX for the three periods of interest are
shown in Figure 7. The effect of the Seale and Choke Canyon Dams on the hydrology of the
river can be observed by comparing these curves. Since construction of the Seale and Choke
Canyon Dams, the magnitude of flows below the 70™ percentile has increased. In contrast, the
magnitude of flows above the 70" percentile has decreased. The latter change is of greatest
significance to the sediment transporting characteristics of the river.

Figure 8 shows the percentage of total sediment load carried by flows of various magnitudes on
the Nueces River at Mathis, TX prior to construction of Seale Dam. As shown in the figure,
flows less than 2,000 cubic feet per second-day (cfs, and cfs-d) were responsible for moving .
about 10% of the total sediment moved by the river. In contrast, flows in excess of 10,000 cfs
moved more than 60% of the total sediment. Flows of this magnitude have occurred much less
frequently since the completion of the Wesley E. Seale and Choke Canyon Dams, a factor
contributing to the reduction in sediment load.

Further analysis was conducted to determine if increasing the size of infrequent, large magnitude
flow events could restore the sediment characteristics of the Nueces River. Average sediment
yield was calculated for flow events within specified ranges for each of the three historical
periods. In Figure 9, results are plotted versus the modal values of the flow ranges. Smoothed
trend lines have been added to this figure.

The reduction in sediment yield since the completion of Seale Dam is significant, especially for
large flows. For example, before construction of Seale Dam, the average sediment yield for
flows between 8,000 and 10,000 cfs-d was 0.656 tons per cfs-d. After construction of Seale
Dam, average yield for flows in this range was reduced to 0.087 tons per cfs-d. For a daily flow
of 9,000 cfs-d, the expected sediment load would be reduced from almost 6,000 tons before Seale
Dam to less than 800 tons after Seale Dam. Because of reduced yield, providing large flows at
pre-Seale Dam magnitudes and frequencies would not be sufficient to restore annual sediment

loads.

The Choke Canyon Dam does not appear to have affected sediment characteristics on the Nueces
River as dramatically as the Wesley A. Seale Dam. From Figure 9, it can be seen that sediment
yields have not changed dramatically since Choke Canyon Dam was constructed. In addition, a
lake survey conducted by the TWDB in 1993 confirms that there was no significant build up of
sediment behind the dam after approximately 10 years of operation. A similar lake survey has
not been completed for Lake Corpus Christi, the reservoir behind the Wesley A. Seale Dam.

The change in slope of the double-mass curve (Figure 6) indicates that sediment is being trapped
behind Seale Dam. This dam may not have features such as low-level outlets that allow operators
to effectively flush sediment. Without such a capability, sediment that historically has been
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carried to Nueces Bay is likely to be retained behind the dam. This results in an undesirable
reduction of reservoir capacity, as well as potential environmental impacts to the bay. No
studies, however, have been completed to determine the extent of these impacts.

= 10000 4
[= ]
2 ]
° ]
3 1000 ;
= E
(7]
E ]
T 100 1
3] E '
> 1 '
= ] :
e 10 r
# :
] |
|

10 100 1000 0000 100000

Average Daily Flow [cfs]
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Table 11. Coefficient Values for Sediment Model.

Pre Seale Dam Q< 80cfs-d |80cfs-d <Q <2000 cfs-d| Q> 2000 cfs-d
A [tons/cfs-d] 0.293 0.2379 0.0122
B [unitless] 1.002 1.053 1.439
Between Seale and Choke | Q < 150 cfs-d }150 cfs-d < Q <2000 cfs-| Q > 2000 cfs-d
d
A [tons/cfs-d] 0.0534 0.2019 0.00542
B [unitless] 1.092 0.8908 1.33
Post Choke Canyon Dam | Q <150 cfs-d |150 cfs-d < Q <1000 cfs-| Q > 1000 cfs-d
d
A [tons/cfs-d] 1.173 0.01005 0.3225
B [unitless] 0.3707 1.298 0.8482
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Figure 5. Annual Sediment Load for Nueces River at Mathis, TX.
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SALINITY-INFLOW EQUATIONS

Salinity data for the period 1977 through 1998 were used to prepare the salinity-inflow equations.
Salinity was calculated as a function of two values, the total of the inflows in the 30-day period
immediately prior to the salinity measurement (Q1) and the total of the inflow in the period 30 to
60 days before to the salinity measurement (Q2). In the equations below, S is salinity in psu, Q is
the monthly combined inflow in 1000 ac-ft, and In is the natural logarithm function.

Head of Nueces Estuary: Sun = 44.934 - 6.026*In(Q,) - 2.744*In(Q>)

Mid-Nueces Bay: Smn = 39.756 — 3.697*In(Q,) — 1.621*In (Qy)

Mid-Corpus Christi Bay: Smce = 35.918 - 1.284*In(Q,) — 0.783*In(Q2)

Table 8: Salinity-inflow regression equation statistics.

Salinity Zone N R* Adj. R S.E. p-value
Head of Nueces Estuary 186  0.76 0.76 5.303 < 0.0001
Mid-Nueces Bay 551 0.52 0.52 5.879 < 0.0001
Mid-Corpus Christi Bay 455  0.21 0.21 4.617 < 0.0001
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HARVEST-INFLOW EQUATIONS

Harvest and inflow data described above were used to developed harvest-inflow equations. In
order to improve R?, outliers were identified via Cook’s distance, standardized residual, and
Mehalanobis distance, and were omitted from regression analysis on a trial and error basis. No
more than 10% of the data were omitted as outliers. Observations for which harvest was not
reported were also omitted because the lack of reported harvest is a function of effort rather than
production. For white shrimp, catch per unit effort (CPUE), as opposed to harvest, was regressed
against bi-monthly inflows in order to eliminate statistical noise and derive an acceptable
equation. CPUE is in units of Ibs./trip, and is not a true measure of catch per unit effort because
trip is not temporally defined. In the equations below, H is annual harvest in pounds per year
(Ibs/yr) and Qg is the sum of inflows for a two-month period in 1000 ac-ft (P = SO for
September-October, ND for November-December, JF for January-February, MA for March-
April, MJ for May-June, and JA for July-August). “In” is the natural logarithm function.

Blue Crab: In(Hpe) = 5.1185 + 0.00671*Qua — 0.00725*Qy4 + 0.00272*Qso

Brown Shrimp: In(Hps) = 7.941 + 0.2989*In(Qma) — 0.5207*In(Qso)

White Shrimp: In(CPUEys) = 3.170 + 0.2837*In(Quma) + 0.0814*In(Qya) +
0.1909*In(Qso)

Red Drum: In(Hyg) = -1.6013 — 1.022*In(Qsp) + 1.472*In(Qpyy) + 0.5037*In(Qnp)

Spotted Seatrout:  In(Hgy) = 2.8554 — 0.3499*%(Qy)"? + 0.2054*(Qua)"? + 0.1320%(Qumy)'? +
0.0504*(Qs0) ">

Black Drum: Hypg = -82.94 — 47.71*In(Qyp) + 44.50*(Quma)"? + 25.55*In(Qya) +
15.55*In(Qnp)

Southem Flounder:  In(Hp) = 3.392 + 0.2203*In(Qma) + 0.3720%In(Qwmy) - 0.5495*%In(Qj4a)

Table 11: Harvest-inflow equation statistics.

Species N-used N-deleted R® Adj.R? S.E. p-value
Black Drum 31 2 0.79 0.76 56.78 0.0005
Soouthern Flounder 23 10 0.52 0.45 0.6238 0.0023
Blue Crab 27 6 0.37 0.28 0.9743 0.0134
Red Drum 20 0 0.85 0.82 0.5819 0.0001
Spotted Seatrout 20 0 0.93 0.91 0.2910 0.0001
Brown Shrimp 22 14 0.62 0.58 0.6072 0.0001
White Shrimp 16 20 0.64 0.55 0.2634 0.0056
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RESULTS

Execution of TXEMP yielded minimum inflow (MinQ) of 115,640 ac-ft/yr, maximum inflow
(MaxQ) of 167,070 ac-ft/yr, and maximum total harvest (MaxH) at inflow of 138,490 ac-ft/yr
(Figure 6). It is the consensus of the Bays and Estuaries teams from both the TWDB and TPWD
that inflow recommendations between MinQ and MaxQ satisfy all constraints and produce
biologically feasible results. The following table presents MinQ and MaxH from the solution set,
and also presents MinQ-Sal, which is the result of running TXEMP with only salinity constraints.

Month Min(Q-Sal MinQ MaxH
Jan 2,230 2,230 2,230
Feb 2,780 2,780 2,780
Mar 4410 4410 4,920
Apr 5,180 5,180 5,180
May 32,130 32,14OI 37,770
Jun 9,280 19,990 36,430
Jul 9,820 6,980 9,820
Aug 9,750 9,750 9,750
Sep 9,600 11,040 9,600
Oct 4,380 8,690 7,560
Nov 6,410 7,780 7,780
Dec 4,670 4,670 4,670
Total 100,640} 115,640} 138,490
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Figure 3.1

Max H vs. Min Q
Nueces Estuary Salinity Zones
March 1988

Max H

Min Q

Salinity Zones (ppt)
0-499
5-9.99

[ 10-14.99

B 15-199

B 20-24.99

B 25-29.99

B -0

Salinity Difference (ppt) il -

B - 1 3=, :
L_= No Change \ B - oY
Habitat a S - -

[T Algal Flats

f__ Low Saline Marsh
B High Saline Marsh
B Estuarine Shrub-Scrub




Figure 3.2
Max H vs. Min Q
Nueces Estuary Salinity Zones
May 1988
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Figure 3.3
Max H vs. Min Q
Nueces Estuary Salinity Zones
September 1988
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Figure 3.4

Max H vs. Min Q
Nueces Estuary Salinity Zones
October 1988
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Figure 3.5
Max H vs. Min Q
Nueces Estuary Salinity Zones
March 1991
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Figure 3.6

Max H vs. Min Q
Nueces Estuary Salinity Zones

May 1991
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Figure 3.7
Max H vs. Min Q
Nueces Estuary Salinity Zones
September 1991
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Figure 3.8
Max H vs. Min Q
Nueces Estuary Salinity Zones

October 1991
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Figure 3.10. Daily average salinity under A: MaxH-8889 and B:MinQ-8889 for the upper Nueces
Bay. Solid line shows simulated salinities from hydrodynamic model and dashed lines show lower
and upper salinity bounds used for the upper bay constraints in the optimization model.
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Figure 3.11. Daily average salinity under A:MaxH-8192 and B:MinQ-9192 for the upper Nueces
Bay. Solid line shows simulated salinities from hydrodynamic model and dashed lines show lower
and upper salinity bounds used for the upper bay constraints in the optimization model.
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Figure 3.12. Daily average salinity under A:MaxH-8889 and B:MinQ-8889 for the Nueces
Causeway. Solid line shows simulated salinities from hydrodynamic model and dashed
lines show lower and upper salinity bounds used for the mid-Nueces Bay constraints in the
optimization model.
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Figure 3.20
Spatial Distribution of Blue Crab
in Nueces Estuary for Wet and Dry Years
March through July
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Figure 3.21

Spatial Distribution of Brown Shrimp
n Nueces Estuary for Wet and Dry Years
April through July
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Figure 3.22

Spatial Distribution of Atlantic Croaker
in Nueces Estuary for Wet and Dry Years

January through May
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